GC Intelligence Report

[5 perf_seda_141_G1_400mb_gc.zip
@ Duration: 13 hrs 26 min 15 sec

@ Congratulations! Your application's GC activity is healthy.

¢ Recommendations

(CAUTION: Please do thorough testing before implementing below recommendations.)

+ 5 sec 50 ms of GC pause time is triggered by '"G1 Humongous Allocation' event. Humongous allocations are allocations that are larger than 50% of the region size in G1. Frequent
humongous allocations can cause couple of performance issues:
1. If the regions contain humongous objects, space between the last humongous object in the region and the end of the region will be unused. If there are multiple such humongous
objects, this unused space can cause the heap to become fragmented.

2. Until Java 1.8u40 reclamation of humongous regions were only done during full GC events. Where as in the newer JWMs, clearing humongous objects are done in cleanup phase.

Solution:
You can increase the G1 region size so that allocations would not exceed 50% limit. By default region size is calculated during startup based on the heap size. It can be overriden by
specifying '-X¥X:G1HeapRegionSize' property. Region size must be between 1 and 32 megabytes and has to be a power of two. Note: Increasing region size is sensitive change as it

will reduce the number of regions. So before increasing new region size, do thorough testing.

v 70.0 ms of GC pause time is triggered by 'Metadata GC Threshold' event. This type of GC event is triggered under two circumstances:
1. Configured metaspace size is too small than the actual requirement

2. There is a classloader leak (very unlikely, but possible).

Solution:
You may consider setting "-XX:MetaspaceSize' to a higher value. If this property is not present already please configure it. Setting these this arguments to a higher value will reduce
'Metadata GC Thrashold' frequency. If you still continue to see '"Metadata GC Threshold' event reported, then you need to capture heap dump from your application and analyze it. You

can learn how to do heap dump analysis from this article.

« |t looks like you are using G1 GC algorithm. If you are running on Java 8 update 20 and above, you may consider passing -XX:+UseStringDeduplication to your application. It will

remove duplicate strings in your application and has potential to improve overall application's performance. You can learn more about this property in this article.

+ This application is using the G1 GC algorithm. If you are looking to tune G1 GC performance even further, here are the important G1 GC algorithm related JVM arguments

v -XX:+UseCompressedQops is not required to be passed, if you are running in Java SE update 23 and later. Compressed ocops is supported and enabled by default in Java SE 6u23
and later versions. For more details, refer here.

A -

= JVM memory size

— e

JVM memory size - Allocated vs Peak (gb)

Young Generation 4.89 gb 4.8 gb
Old Generation 7.6 gb 5.93gb allocated
Meta Space 400 mb n/a

Young + Old + Meta

space

8.39 gb 7.66 gb

peak usage

| voung Gen QP Old Gen [Meta Space

https://blog.heaphero.io/2018/03/27/how-to-diagnose-memory-leaks/
https://gceasy.io/gc-recommendations/stringdeduplication-solution.jsp?
https://gceasy.io/gc-recommendations/important-g1-gc-arguments.jsp?
https://gceasy.io/gc-recommendations/avoid-passing-XX+UseCompressedOops.jsp?

Q, Key Performance Indicators

(Important section of the report. To learn more about KPls, click here)

€ Throughput © : 99.944%

GC Duration Time Range

© Latency: 900 - 1,000ms {0.13%
Max Pause GC Time 990 ms 700 - 800ms 40.13%

400 - 500ms 40.26%

GC Pause Duration Time Range @: 200 - 300ms 40.13%

100 - 200ms 40.39%

Duration (ms) No. of

ms Percentage
100 Change | GCs

0-100 785 98.84% 0 10 20 30 40 60 70 80 90 100
100 - 200 3 0.39%
200 - 300 1 0.13%
400 - 500 2 0.26%
700 - 800 1 0.13%
800 - 900 1 0.13%
900 - 1,000 1 0.13%

.ll Interactive Graphs cow o zoom arasen

Heap Usage (after GC) wmatic e orapi)

'.lé

Heap size (mb)
8

W
o
'

Nov 2, 13:00 w2 ‘ov 2 16:00 tov 2 17400

Time UTC+0000

Heap Usage (before GC) wnatis s grapnt

8000
I La

https://blog.gceasy.io/2016/10/01/garbage-collection-kpi/
https://www.youtube.com/watch?v=JhZFj6gJQyk

7,000

Heap size (mb)
8

:

2,000

1,000

0
Nov 2, 1.2:00 Nov 2, 13:00 Nov 2, 14:00 Nav 2, 15:00 Nov 2, 16:00 Nov 2, 17:00 Mov 2, 18:00 Mov 2, 19:00 Nov 2, 20:00 Nov 2, 21:00
Time UTC+0000

GC Duration Time wstis tris craph?)
[|

100

o |

Nov 2, 12:00 Nov 2, 13:00 Nov 2, 14:00 Nov 2, 15:00 Nov 2, 16:00 Nov 2, 17:00 Nov 2, 18:00 Nov 2, 19:00 Nov 2, 2000 Nowv 2, 21:00
Time UTC+0000

B Young GC A Full GC

Pause GC Duration Time whatis s graph?)
1,000 -

Time [ms)

100 - - ,

o |

Nov 2, 12:00 Nov 2, 13:00 Nov 2, 14:00 Now 2, 15:00 Nov 2, 16:00 Nov 2, 17:00 Nov 2, 18:00 Nov 2, 19:00 Nov 2, 20:00 Now 2, 21:00
Timaa | ITE LN

PEEE W B T RS

B Young GC A Full GC

Reclaimed Bytes wnatis tis greon)

|]
L B :

A m ...
l_}l _ lnﬂ_.-l' «l 1

Nowv 2, 12:00 Nov 2, 13:00 Now 2, 14:00 Nov 2, 16:00 Now 2, 17100

Time UTC+0000

1,000

B Young GC A Full GC

\'Dung Gen what is this graph?

Li L L L
2, 12:00 Nov 2, 13:00 Now 2, 14:00 Nov 2, 15:00 Nov 2, 16:00 Now 2, 1

Time UTC+0000

- allocated space - before GC - after GC

0|d GE[‘I {(What is this graph?)
8,000

7,000

6,000

4,000

(mb)
=

i

ik

;

3,000

2.000 I L

1,000 I*W

1,000 A4 T T T T T T T i L
Mov 2, 12:00 Nov 2, 13:00 Nov 2, 14:00 MNov 2, 15:00 Nov 2, 16:00 Mov 2, 17:00 Mov 2, 18:00 Mov 2, 15:00 MNow 2, 20:00 Nov 2, 21:00

Time UTC+0000

-~ allocated space — before GC — after GC

Allocation & Promotion whstis s graph?)

G T L L
Nov 2, 12:00 Now 2, 13:00 Nov 2, 14:00 Now 2, 15:00 MNov 2, 16:00 MNov 2, 17100 MNov 2, 18:00

Time UTC+0000

- Allocated objects size 4 Promoted (Young -> 0ld) objects size

Tenuring Summary

l._“

L] Li L

— Desired Survivor Size =— Survivor total size

' G1 Collection Phases Statistics

(One G1 GC event has multiple phases. This section provides detailed statistics of each G1 phases.)

Cleanup

Mixed

Remark

initial-mark

Concurrent Mark

Young

Count @

Total GC Time @
Avg GC Time @
Avg Time std dev
Min/Max Time @

Avg Interval Time

e

Avg Time (ms)

Cumulative Time (secs)

Mixed @ Cleanup

® Young @ Concurrent Mark @ initial-mark @ Remark

474 192 96 96 12 96 966

22 sec 520 ms

47.5 ms

74.8 ms

0/990 ms

1 min 10 sec 376

ms

7 sec 555 ms

39.3 ms

41.8 ms

0/132 ms

1 min 18 sec 58

ms

2 sec 320 ms

24.2 ms

16.1 ms

0/90.0 ms

2 min 36 sec 939

ms

1 sec 630 ms

17.0 ms

597 ms

0/30.0 ms

2 min 36 sec 940

ms

240 ms

20.0 ms

12.9ms

0/40.0 ms

3 min 37 sec 10

ms

200 ms

2.08 ms

4.06 ms

0/10.0 ms

2 min 36 sec 940

ms

34 sec 465 ms

35.7 ms

58.0 ms

0/990 ms

1 min 39 sec 284

ms

® G1 GC Time

Pause, concurrent Total Time
(secs)

Pause, concurrent Avg Time
(secs)

Pause Time
@ Pause GC Time @@ Concurrent GC Time

Pause Time @ Concurrent Time @

Total Time 26 sec 310 ms Total Time 7 sec 555 ms
Avg Time 34.8 ms Avg Time i7.9ms

Std Dev Time 61.3ms Std Dev Time 212 ms

Min Time 0 Min Time 0.531 ms
Max Time 990 ms Max Time 132 ms

£+ Ohiect Stats

- T W W R W RS e ra

(These are perfect micro-metrics to include in your performance reports)

Total created bytes 2.49tb
Total promoted bytes 856.6 mb
Avg creation rate 54.02 mb/sec

Avg promotion rate 18 kb/sec

6 Memory Leak @

Mo major memory leaks.

(Mote: there are 8 flavours of OutOfMemoryErrors. With GC Logs you can diagnose only 5 flavours of them(Java heap space, GC overhead limit exceeded, Requested array size

exceeds VM limit, Permgen space, Metaspace). So in other words, your application could be still suffering from memory leaks, but need other tools to diagnose them, not just GC

Logs.)

|= Consecutive Full GC @

MNone.

Il Long Pause o

MNone.

@ Safe Point Duration &

(To learn more about SafePoint duration, click here)

Total time for which 37.654 secs 0.002 secs 0.078 %
app threads were stopped
Time taken to stop app threads 2.031 secs 0.0 secs 0.004 %

> Allocation stall metrics @

(To learn more about Allocation Stall, click herg)

Mot Reported in the log.

© GC Causes o

(What events caused GCs & how much time they consumed?)

395

49.7 ms 990 ms 19 sec 650 ms

G1 Evacuation Pause &

https://blog.gceasy.io/2017/05/30/improving-your-performance-reports/
https://tier1app.files.wordpress.com/2014/12/outofmemoryerror2.pdf
https://gceasy.io/gc-recommendations/safe-point-solution.jsp
https://gceasy.io/gc-recommendations/allocation-stall-solution.jsp

G1 Humongous Allocation @ 175 28.9 ms 430 ms 5 sec 50 ms
GCLocker Initiated GC @ 10 32.0 ms 60.0 ms 320 ms

Metadata GC Threshold & 3 23.3 ms 30.0 ms 70.0 ms

1 Evacuation Pause @ Gl Humongous Allocation
GCLocker Initiated GC g metadata GC Threshold

2C Tenuring Summary @
Desired Survivor Size: 308.0 mb,

Max Threshold: 15

N T T T 0

age 1 578 17052.33 17052.33
age 2 569 5082.62 22285.73
age 3 556 3428.35 25829.68
age 4 543 2499.46 28436.73
age 5 531 1702.12 30337.92
age 6 519 1126.33 31586.05
age 7 507 992.68 32587.71
age B 495 883.02 33197.06
age 9 482 785.28 33526.12
age 10 470 746.64 33830.49
age 11 459 724.48 3424513
age 12 447 709.54 34659.19
age 13 435 635.21 35097.85
age 14 424 629.02 35571.29
age 15 414 610.39 35927.25

=l Command Line Flags @

XX +PrimtGCTimeStamps =-XX:+PrintTenuringDistribution =X¥:+UseCompressedClassPointers -X¥X:+UseCompressedOops KX+ U=seG1GC

