
JVM Performance
Engineering and
Troubleshooting

C O M P I L A T I O N O F R A M L A K S H M A N A N ' S B L O G S & A R T I C L E S

T I E R 1 A P P

01-26Garbage Collection

27-64Threads

T A B L E O F C O N T E N T S

011 - Why garbage collection might be more important that you think ?

032 - What id garbage collection log? How to analyze and enable?

053 - garbage collection log analysis API

094 - Memory turning: Key performance Indicators

115 - 3 popular myths about garbage collection

147 - Real time is greater than user and sys time

168 - Eliminate consecutive Full GCs

199 - Rotating GC Log Files

22 10 - Reduce long GC Pauses

11 - Which GC to use? 26

12 - How to take thread dumps? 8 options 27
13 - Thread dump analysis API 33
14- How to identify critical code path ? 36
15 - What’s the di�erence between Blocked, Waiting and Timed_Waiting? 39
16 - Thread dump pattern – athelete 42
17 - Deadlock 44
18 - Thread dump analysis pattern – treadmill 46
19 - Thread dump analysis pattern - ATHEROSCLEROSIS 48
20 - Thread dump analysis pattern – tra�c jam 50
21 - Thread dump analysis pattern - repetitive strain injury (RSI) 52
22 - Thread dump analysis pattern - Additives 54
23 - Thread dump analysis pattern - leprechaun trap 55

136 - Sys time greater than user time

65-101Memory

61

65
68
72
75
78
80
84
89

26 - Heap dump analysis API

27 - How to capture Heap Dump from android App ? - 3 options
 28 - Disappointing story on Memory Optimization

29 - How to diagnose OutofMemory in android?

30 - How to diagnose memory leaks?

31 - What happened behind the scene – finalize() method?

32 - Troubleshoot OutOfMemory Error: Unable to create new native thread

33 - Eclipse Mat - Tidbits

34 - Shallow Heap, Retained Heap

35 - OutofMemoryError

36 - Virtual Machine Error

93

37 - Remote Debugging Java Application 102

24 - StackOverFlowError: Causes & Solutions

25 - How to troubleshoot CPU problems?

57

102-104General

97
99

WHY GARBAGE COLLECTION
MIGHT BE MORE IMPORTANT
THAN YOU THINK?

Poor Garbage Collection can lead to:

• Unpleasant user experience (SLA
Breaches)

• Increase the bill from cloud hosting
providers

• Puts entire Application Availability
under risk

I have heard from few of my developer friends saying:
“Garbage Collection is Automatic. So, I don’t have to
worry about it.“
First part is true, i.e. “Garbage Collection is Automatic” on
all modern platforms – JVM (Java Virtual Machine), ART
(Android Run Time)…
But the second part may not be as true as you think, i.e.
“I don’t have to worry about it.” Garbage Collection is
automatic, but it’s not free. It comes with a price.

To garbage collect objects automatically, entire application must be paused intermittently to mark the
objects that are in use and sweep away the objects that are not used. During this pause period, all
customer transactions which are in motion will be stalled (i.e. frozen). Depending on the type of GC
algorithm and memory settings that you configure, pause times can run from few milliseconds to few
seconds to few minutes. Thus, Garbage Collection can a°ect your application SLA (Service L evel
Agreement) significantly. Frequent pauses in the mobile application can jank the app (i.e. stuttering,
juddering, or halting). It can leave a very unpleasant experience for your user.

1. Unpleasant user experience (SLA Breaches)

In fact, the price can be *very expensive*.

1
GARBAGE COLLECTION

01

Garbage collection consumes a lot of CPU cycles. Each application will have thousands/millions of

objects sitting in memory. Each object in memory should be investigated periodically to see whether

they are in use? If it’s in use, who is referencing it? Whether those references are still active? If they

are not in use, they should be evicted from memory. All these investigations and computation

requires a considerable amount of CPU power.

Most applications saturate memory first before saturating other resources (CPU, network bandwidth,

storage). Most applications upgrade their EC2 instance size to get additional memory rather get

additional CPU or network bandwidth. More object creation translates to more frequent Garbage

Collection. Thus, you will end up buying more compute power. It will increase the bill from your cloud

hosting providers.

2. Increase the bill from cloud hosting providers

Sometimes garbage collection events pause the application for several seconds to several minutes.

Sometimes garbage collection events might run repeatedly. When Garbage Collection runs

repeatedly, no customers transactions will be processed. When Garbage Collection runs repeatedly,

to recover from the situation, the application has to be recycled. Such events can put the availability

of your applications under risk.

Thus, to achieve ‘Wow’ user experience, reduce bills from hosting providers and increase your

application’s availability, one would have to study and optimize the Memory/Garbage Collection

settings. Tools such as GCeasy.io, HP Jmeter can help you to study and optimize the

Memory/Garbage collection settings.

3. Puts entire Application Availability under risk

1
02

Garbage collection has more profound impact on the application in contrary to what most engineers

think. In order to optimize memory and garbage collection settings and to troubleshoot

memory-related problems, one has to analyze Garbage Collection logs.

GC Logging can be enabled by passing below-mentioned system properties during application startup

Below is the system property that is supported by all version of Java until JDK 8.

Until Java 8:

Below is the system property that is supported by all version of Java starting from JDK 9.

GC log has rich information, however, understanding GC log is not easy. There isn’t su˛cient

documentation to explain GC log format. On top of it, GC log format is not standardized. It varies by

JVM vendor (Oracle, IBM, HP, Azul, …), Java version (1.4, 5, 6, 7, 8, 9), GC algorithm (Serial, Parallel,

CMS, G1, Shenandoah), GC system properties that you pass (-XX:+PrintGC, -XX:+PrintGCDetails,

-XX:+PrintGCDateStamps, -XX:+PrintHeapAtGC …). Based on this permutation and combination, there

are easily 60+ di°erent GC log formats.

From Java 9:

-XX:+PrintGCDetails -Xloggc:<gc-log-file-path>
Example:
-XX:+PrintGCDetails -Xloggc:/opt/tmp/myapp-gc.log

-Xlog:gc*:file=<gc-log-file-path>
Example:
-Xlog:gc*:file=/opt/tmp/myapp-gc.log

WHAT IS GARBAGE
COLLECTION LOG?
HOW TO ENABLE & ANALYZE? 2
Enabling GC logs

How to analyze GC logs?

03

Thus, to analyze GC logs, it’s highly recommended to use GC log analysis tools such as GCeasy,

HPJmeter. These tools parse GC logs and generate great graphical visualizations of data, reports Key

Performance Indicators and several other useful metrics.

2
04

In this modern world, Garbage collection logs are still analyzed in a tedious & manual mode. i.e. you

have to get hold of your Devops engineer who has access to production servers, then he will mail you

the application’s GC logs, then you will upload the logs to GC analysis tool, then you have to apply

your intelligence to anlayze it. There is no programmatic way to analyze Garbage Collection logs in a

proactive manner. Thus to eliminate this hassle, gceasy.io is introducing a RESTful API to analyze

garbage collection logs. With one line of code you can get your GC logs analyzed instantly.

GARBAGE COLLECTION
LOG ANALYSIS API 3
Here are few use cases where this API can be extremely useful.

Use case 1: Automatic Root cause Analysis

Advantage 1

Most of the DevOps invokes a simple Http ping or APM tools to monitor the applications health. This

ping is good to detect whether application is alive or not. APM tools are great at informing that

application’s CPU spiked up by ‘x%’, memory utilization increased by ‘y%’, response time dropped by

‘z’ milliseconds. It won’t inform what caused the CPU to spike up, what caused memory utilization to

increase, what caused the response time to degrade. If you can configure Cron job to capture thread

dumps/GC logs on a periodic interval and invoke our REST API, we apply our intelligent patterns &

machine learning algorithms to instantly identify the root cause of the problem.

Whenever these sort of production problem happens, because of the heat of the

moment, DevOps team recycles the servers with out capturing the thread dumps and

GC logs. You need to capture thread dumps and GC logs at the moment when

problem is happening, in order to diagnose the problem. In this new strategy you

don’t have to worry about it, because your cron job is capturing thread dumps/GC

logs on a periodic intervals and invoking the REST API, all your thread dumps/GC

Logs are archived in our servers.

Advantage 2 Unlike APM tools which claims to add less than 3% of overhead, where as in reality it

adds multiple folds, beauty of this strategy is: It doesn’t add any overhead (or

negligible overhead). Because entire analysis of the thread dumps/GCeasy are done

on our servers and not on your production servers..

05

Use case 2: Performance Tests

When you conduct performance tests, you might want to take thread dumps/GC logs on a periodic

basis and get it analyzed through the API. In case if thread count goes beyond a threshold or if too

many threads are WAITING or if any threads are BLOCKED for a prolonged period or lock isn’t getting

released or frequent full GC activities happening or GC pause time exceeds thresholds, it needs to get

the visibility right then and there. It should be analyzed before code hits the production. In such

circumstance this API will become very handy.

Use case 3: Continuous Integration

When you conduct performance tests, you might want to take thread dumps/GC logs on a periodic

basis and get it analyzed through the API. In case if thread count goes beyond a threshold or if too

many threads are WAITING or if any threads are BLOCKED for a prolonged period or lock isn’t getting

released or frequent full GC activities happening or GC pause time exceeds thresholds, it needs to get

the visibility right then and there. It should be analyzed before code hits the production. In such

circumstance this API will become very handy.

Register with us. We will email you the API

key. This is a one-time setup process.

Note: If you have purchased enterprise

version with API, you don’t have to register.

API key will be provided to you as part of

installation instruction.

The body of the HTTP request should

contain the Garbage collection log that

needs to be analyzed.

HTTP Response will be sent back in JSON

format. JSON has several important stats

about the GC log. Primary element to look

in the JSON response is: “isProblem“. This

element will have value to be “true” if any

memory/performance problems has been

discovered. “problem” element will contain

the detailed description of the memory

problem.

Post HTTP request to

http://api.gceasy.io/analyzeGC?apiKey={API

_KEY_SENT_IN_EMAIL}

1 2

3 4

HOW TO INVOKE GARBAGE COLLECTION LOG ANALYSIS API?

06

curl -X POST --data-binary @./my-app-gc.log http://api.gceasy.io/analyzeGC?apiKey=
{API_KEY_SENT_IN_EMAIL} --header "Content-Type:text"

CURL command

Assuming your GC log file is located in “./my-app-gc.log,” then CURL command to invoke the API is:

It can’t get any more simpler than that? Isn’t it?
Note: use the option “–data-binary” in the CURL instead of using “–data” option. In “–data” new line

breaks will be not preserved in the request. New Line breaks should be preserved for legitimate

parsing.

07

Other Tools

You can also invoke the API using any webservice client tools such as: SOAP UI, Postman Browser

Plugin,…..

Fig: POSTing GC logs through PostMan plugin

{
{
 "isProblem": true,
 "problem": [
 "Our analysis tells that Full GCs are consecutively running in your application. It might cause
intermittent OutOfMemoryErrors or degradation in response time or high CPU consumption or
even make application unresponsive.",
],
 "jvmHeapSize": {
 "youngGen": {
 "allocatedSize": "7.5 gb",
 "peakSize": "6 gb"
 },

08

 "oldGen": {
 "allocatedSize": "22.5 gb",
 "peakSize": "22.5 gb"
 },
 "metaSpace": {
 "allocatedSize": "1.04 gb",
 "peakSize": "48.52 mb"
 },
 "total": {
 "allocatedSize": "30 gb",
 "peakSize": "28.5 gb"
 }
 },
 "gcStatistics": {
 "totalCreatedBytes": "249.49 gb",
 "measurementDuration": "7 hrs 32 min 52 sec",
 "avgAllocationRate": "9.4 mb/sec",
 "avgPromotionRate": "1.35 mb/sec",
 "minorGCCount": "62",
 "minorGCTotalTime": "1 min 19 sec",
 "minorGCAvgTime": "1 sec 274 ms",
 "minorGCAvgTimeStdDeviation": "2 sec 374 ms",
 "minorGCMinTIme": "0",
 "minorGCMaxTime": "13 sec 780 ms",
 "minorGCIntervalAvgTime": "7 min 25 sec 442 ms",
 "fullGCCount": "166",
 "fullGCTotalTime": "14 min 11 sec 620 ms",
 "fullGCAvgTime": "5 sec 130 ms",
 "fullGCAvgTimeStdDeviation": "5 sec 207 ms",
 "fullGCMinTIme": "120 ms",
 "fullGCMaxTime": "57 sec 880 ms",
 "fullGCIntervalAvgTime": "2 min 19 sec 104 ms"
 },
 "gcKPI": {
 "throughputPercentage": 99.952,
 "averagePauseTime": 750.232,
 "maxPauseTime": 57880
 },
 "gcDurationSummary": {
 "groups": [
 {
 "start": "0",
 "end": "6",

09

MEMORY TUNING: KEY
PERFORMANCE INDICATORS 4
When you are tuning the application’s memory & Garbage Collection settings, you should take well-

informed decisions based on the key performance indicators. But there are overwhelming amount

of metrics reported; which one to choose and which one to leave? This article intends to explain

the right KPIs and right tools to source them.

Throughput is the amount of productive work done by your application in a given time period. This

brings the question what is productive work? what is non-productive work?

Productive Work: This is basically the amount of time your application spends in processing your

customer’s transactions.

Non-Productive Work: This is basically the amount of time your application spend in house-keeping

work, primarily Garbage collection.

Let’s say your application runs for 60 minutes. In this 60 minutes let’s say 2 minutes is spent on GC

activities.

It means application has spent 3.33% on GC activities (i.e. 2 / 60 * 100)

It means application throughput is 96.67% (i.e. 100 – 3.33).

Now the question is: What is the acceptable throughput %?
It depends on the application and business demands.
Typically one should target for more than 95% throughput.

WHAT ARE THE RIGHT KPIS?

THROUGHPUT LATENCY FOOTPRINT

Throughput

10

4 Latency

Footprint

Right Tools

This is the amount of time taken by one single Garbage collection event to run. This indicator should

be studied from 3 fronts.

1. Average GC time: What is the average amount of time spent on GC?

2. Maximum GC time: What is the maximum amount of time spent on a single GC event? Your applica-

tion may have service level agreements such as “no transaction can run beyond 10 seconds”. In such

cases, your maximum GC pause time can’t be running for 10 seconds. Because during GC pauses,

entire JVM freezes – no customer transactions will be processed. So it’s important to understand the

maximum GC pause time.

3. GC Time Distribution: You should also understand how many GC events are completing with in

what time range (i.e. within 0 – 1 second, 200 GC events are completed, between 1 – 2 second 10 GC

events are completed …)

Footprint is basically the amount CPU consumed. Based on your GC algorithm, based on your memory

settings, CPU consumption will vary. Some GC algorithms will consume more CPU (like Parallel, CMS),

whereas other algorithms such as Serial will consume less CPU.

According to memory tuning Gurus, you can pick only 2 of them at a time.

If you want good throughput and latency, then footprint will degrade.

If you want good throughput and footprint, then latency will degrade.

If you want good latency and footprint, then throughput will degrade.

Throughput and Latency can be obtained from analyzing Garbage collection Logs. Upload your

application’s Garbage Collection log file in http://gceasy.io/ tool. This tool can parse Garbage Collec-

tion logs and generates Throughput and Latency indicators for you. Below is the screen shot from the

http://gceasy.io/ tool showing the throughput and latency:

11

3 POPULAR MYTHS ABOUT
GARBAGE COLLECTION 5

THERE ARE 3 HIGHLY POPULAR MYTHS
ABOUT GARBAGE COLLECTION.
LET’S REVIEW THOSE MYTHS AND THE ACTUAL TRUTH BEHIND THEM.

MYTH #1: MINOR GC DON’T PAUSE THE APPLICATION

MYTH TRUTH
There are di°erent types of Garbage

Collection events: Minor GC event, Major GC

event & Full GC event. It’s been educated that

Minor GC are harmless, as they don’t pause

the application. However Major/Full GC are

dangerous because it pauses the application.

This is a lie. 100% lie. Minor GC *do pause* the

application. Minor GC pause times are com-

paratively lower than other GC events most of

the times. Thus, it could have been educated

as ‘harmless’. However, in some cases, we

have seen Minor GC take more time than all

the Major/Full GC events. Thus, when tuning

your application, pay proper attention towards

Minor GC pause time Metrics as well.

MYTH #2: SERIAL GC PERFORMANCE IS HORRIBLE

MYTH TRUTH
There are several types of Garbage Collection

algorithms:

• Serial GC

• Parallel GC

To validate this theory, we conducted a study

on a major B2B travel application in produc-

tion, which processes more than 70% of North

America’s leisure travel transactions.

12

MYTH #3: GARBAGE COLLECTION IS AUTOMATIC.
I DON’T HAVE TO WORRY ABOUT IT.

MYTH TRUTH
I have heard few developer friends saying:

“Garbage Collection is Automatic. I don’t have

to worry about it”.

First part is true, i.e. “Garbage Collection is

Automatic” on all modern platforms – JVM

(Java Virtual Machine), ART (Android Run

Time)… But the second part is not so true, i.e.

“I don’t have to worry about it”. Garbage

Collection is automatic, but it’s not free. It

comes with a price. In fact, the price can be

very expensive. Poor Garbage Collection

can lead to:

• Unpleasant user experience (SLA Breaches)

• Increase in the bill from cloud hosting

providers

• Puts entire application availability under risk

• G1 GC

• Shenandoah GC

Each GC algorithm exhibits its unique

performance characteristics. A false education

industry has been making: ‘Serial GCs are not

meant for serious applications.’ Serial GC

performance characteristics are horrible. It

should be used only during development time

or in prototype applications.

We configured a couple of servers to use

latest ‘G1 GC’ algorithm and couple of servers

to use ‘Serial GC’ algorithm. We just used

vanilla G1 GC and Vanilla Serial GC settings.

Results turned out that Serial GC performance

to be comparable (in fact slightly better than)

to G1 GC algorithm. Of course, with proper

tuning & parameters settings, G1 GC can be

made to run better than Serial GC. The take

away is, Serial GC is not as bad as it’s

portraited.We didn’t pass any additional GC

tuning parameters.

Results turned out that Serial GC performance

to be comparable (in fact slightly better than)

to G1 GC algorithm. Of course, with proper

tuning & parameters settings, G1 GC can be

made to run better than Serial GC. The take

away is, Serial GC is not as bad as it’s

portraited.

SYS TIME GREATER THAN
USER TIME 6
Time taken by every single GC event is reported in the GC log. In every GC event, there are ‘user’,
‘sys’, and ‘real’ time. What does these time mean? What is the di°erence between them ?

• ‘real’ time is the total elapsed time of the GC event. This is basically the time that you see on the
clock.

• ‘user’ time is the CPU time spent in user-mode code (outside the kernel)
• ‘Sys’ time is the amount of CPU time spent in the kernel. This means executing CPU time spent in

system calls within the kernel, as opposed to library code, which is still running in user-space.

In normal (all most all) GC events, user time will be greater than sys time. It’s because, in a GC event,
most of the time is spent within the JVM code and only very less time is spent in the kernel. But in
certain circumstances, you might see sys time to be greater than user time.

[Times: user=0.04 sys=0.35, real=0.42 secs]

Here you can notice the sys time to be 0.35 seconds which is considerably higher than user time 0.04
seconds.

If you observe multiple occurrences of this scenario in your GC log then it might be indicative of one of
the following problems:

1. Operating system problem
2. VM related problem

1. Operating System problem

Operating System exceptions such as page faults, misaligned memory references, and floating-point
exceptions consume large amount of system time. Make sure your OS is running with proper patches,
upgrades, and su˛cient CPU/memory/disk space .

2. VM related Problem

If your application is running in a virtualized environment, may be because of nature of the emulation
sys time can be higher than user time. Make sure virtualized environment is NOT OVERLOADED with
too many environments and also ensure that there are adequate resources available in the Virtual
Machine for your application to run

Example

13

6
Time taken by every single GC event is reported in the GC log. In every GC event, there are ‘user’,
‘sys’, and ‘real’ time. What does these time mean? What is the di°erence between them ?

• ‘real’ time is the total elapsed time of the GC event. This is basically the time that you see in the
clock.

• ‘user’ time is the CPU time spent in user-mode code (outside the kernel).
• ‘Sys’ time is the amount of CPU time spent in the kernel. This means executing CPU time spent in
system calls within the kernel, as opposed to library code, which is still running in user-space.

In normal (all most all) GC events, real time will be less than user + sys time. It’s because of multiple GC
threads work concurrently to share the work load, thus real time will be less than user + sys time. Say
user + sys time is 2 seconds. If 5 GC threads are concurrently working then real time should be some
where in the neighbourhood of 400 milliseconds (2 seconds / 5 GC threads).

But in certain circumstances you might see real time to be greater than user + sys time.

14

REAL TIME IS GREATER THAN
USER AND SYS TIME 7

[Times: user=0.20 sys=0.01, real=18.45 secs]

Example

If you notice multiple occurrences of this scenario in your GC log then it might be indicative of one of
the following problems:

1. Heavy I/O activity
2. Lack of CPU

1. Heavy I/O activity

When there is heavy I/O activity (i.e. networking/disk access/user interaction) on the server then real
time tend to spike up to a great extent. As part of GC logging, your application makes a disk access. If
there is a heavy I/O activity on the server then GC event might be stranded, causing spiked up real
time.

Note: Even if your application is not causing the heavy I/O activity, the other process on the server may
cause the heavy I/O activity leading to the high real time. Here is a brilliant article from LinkedIn
engineers, explaining the GC problem they experienced because of high I/O activity.

You can monitor I/O activity on your server, using the sar (System Activity Report), in Unix.

15

sar -d -p 1

Example

Above commands reports the reads/sec and writes/sec made to the device every 1 second. For more
details on ‘sar’ command refer to this tutorial.

If you notice high I/O activity on your server then you can do one of the following to fix the problem:

a. If high I/O activity is caused by your application, then optimize your application’s I/O activity.
b. Eliminate the processes which are causing high I/O activity on the server
c. Move your application to a di°erent server where I/O activity is less

If multiple processes are running on your server and if your application doesn’t get enough CPU
cycles to run, it will start to wait. When the application starts to wait then real time will be considerably
higher than user + sys time.

You can use the commands like ‘top’ or monitoring tools (nagios, newRelic, AppDynamics…) to
observe the CPU utilization on the server. If you notice CPU utilization to be very high and your
process doesn’t get enough cycles to run then you can do one of the following to fix the problem:

a. Reduce the number of processes that is running on the server, so that your application gets fair
chance to run

b. Increase the CPU capacity – if you are in AWS cloud (or equivalent), move to a bigger instance type
which has more CPU cores

c. Move your application to a new server where there is adequate CPU capacity

2. Lack of CPU

ELIMINATE CONSECUTIVE
FULL GCs 8
Full GC is an important event in the garbage collection process. During this full GC phase, garbage is
collected from all the regions in the JVM heap (Young, Old, Perm, Metaspace). Full GC tends to evict
more objects from memory, as it runs across all generations. A Full GC event has multiple phases.
Certain phases of the Full GC event (like ‘initial-mark, ‘remark’, ‘cleanup’,..) pauses all the application
threads that are running the JVM. During this period, no customer transactions will be processed. JVM
will use all the CPU cycles to perform garbage collection. Due to that CPU consumption will be quite
high. Thus in general full GCs aren’t desired. Needless to ask the desirability of consecutive full GCs.
Consecutive full GCs will cause following problems:

1. CPU consumption will spike up.
2. Because JVM is paused, the response time of your application
transactions will degrade. Thus it will impact your SLAs and cause poor
customer experience.
In this article, let’s learn about this consecutive full GCs – What is it? What causes it? How to fix it?

What is Consecutive full GCs?
It’s always easier to explain through an example. So let’s examine the GC log of a real world
application, which su°ered from this consecutive full GC problem. Below are the graphs generated by
GCeasy tool by analyzing garbage collection logs. Notice the highlighted portion of the first graph. You
can see the full GCs to be consecutively running (red triangles in the graph indicates full GC). If full GC
runs consecutively, then it’s indicative of a problem.

16

8
17

Even though full GCs were consecutively running, it wasn’t able to reclaim enough memory. You can
observe it in the second graph (which shows the reclaimed bytes). In this graph you can see the
memory reclaimed from these full GCs to be very less. It is because most of the objects in memory are
in active use, thus JVM isn’t able to reclaim enough memory.

What causes Consecutive full GCs?
Consecutive Full GCs are caused because of one single reason: Under allocation of JVM heap size or
Under allocation of Perm Gen/metaspace. It’s indicative of the fact that application needs more
memory than what you have allocated. In other words, you are trying to fit in a truck load of objects in
a small compact car. So JVM has to work very hard to clean-up the created garbage, to fit in to a small
compact car, to make room for actively used objects.

Now you might have a question, my application was running fine all along, why all of a sudden I see
this consecutive Full GC problem? That’s a valid question. Answer to this question could be one of the
following:

1. Your application’s tra˛c volume has started to grow since the last time you have tuned the JVM
heap size. May be your business is improving, more users have started to use your application.

2. During your peak volume time period, more objects would get created than normal time. May be
you didn’t tune your JVM for peak tra˛c volume or your peak tra˛c volume has increased since the
last time you have tuned the JVM heap size.

18

How to solve consecutive Full GCs?

Consecutive Full GCs can be solved through one of the following solution:

1. Increase JVM Heap Size
Since consecutive Full GCs runs due to lack of memory, increasing JVM heap size should solve the
problem. Say suppose you have allocated JVM heap size to be 2.5GB, then try increasing it to 3 GB
and see whether it resolves the problem. JVM heap size can be increased by passing the argument:
“-Xmx”. Example:

-Xmx3G

This argument will set the JVM heap size to be 3 GB. If it still doesn’t resolve the problem then try
increasing the JVM heap size step by step. Over-allocation of JVM heap is also not good either, it
might increase the GC pause time as well.

2. Increase Perm Gen/Metaspace Size
Some times full GCs can run consecutively, if Perm Gen or metaspace is under-allocated. In such
circumstance just increase the Perm Gen/Metaspace size.

Adding more JVM instances is an another solution to this problem.When you add more JVM instance,
then tra˛c volume will get distributed. The amount of tra˛c volume handled by one single JVM
instance will go down. If less tra˛c volume is sent to a JVM instance , then less objects will be created.
If less objects are created, then you will not run into the consecutive Full GC problems.

3. Add more JVM instances

Irrespective of the approach you take to resolve the problem, validate the fix in the test environment
before rolling out the change to production. Because any changes to JVM heap settings should be
thoroughly tested & validated. To validate that problem doesn’t resurface with new settings, study your
GC log with GCeasy tool. It has the intelligence to spot and report whether the application is su°ering
from consecutive full GC problem or not.

Validating the fix

19

ROTATING GC LOG FILES 9
Garbage Collection logs are essential artifacts to optimize application’s performance and trouble
shoot memory problems. Garbage Collection logs can be generated in a particular file path by passing
the “-Xloggc” JVM argument.

Example: -Xloggc:/home/GCEASY/gc.log

But the challenge to this approach is: whenever the application is restarted, old GC log file will be
over-ridden by the new GC log file as the file path is same (i.e. /home/GCEASY/gc.log).

Thus you wouldn’t be able to analyze the old GC logs that existed before restarting the application.
Especially if the application has crashed or had certain performance problems then, you need old GC
Logs for analysis.

Because of the heat of the production problem, most of the time, IT/DevOps team forgets to back up
the old GC log file; A classic problem that happens again & again, that we all are familiar :-). Most
human errors can be mitigated through automation and this problem is no exception to it.

A simple strategy to mitigate this challenge is to write new GC log contents in a different file location.
In this article 2 different strategies to do that are shared with you:

1. Suffix timestamp to GC Log file

If you can suffix the GC log file with the time stamp at which the JVM was restarted then, GC Log file
locations will become unique. Then new GC logs will not over-ride the old GC logs. It can be
achieved as shown below:

"-XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:/home/GCEASY/gc-%t.log"

‘%t’ suffixes timestamp to the gc log file in the format: ‘YYYY-MM-DD_HH-MM-SS’. So generated GC
log file name will start to look like: ‘gc-2019-01-29_20-41-47.log’

This strategy has one minor drawback:

a. Growing file size

Suppose if you don’t restart your JVMs, then GC log file size can be growing to huge size. Because in
this strategy new GC log files are created only when you restart the JVM. But this is not a major
concern in my opinion, because one GC event only occupies few bytes. So GC log file size will not
grow beyond a manageable point for most applications.

2. Use -XX:+UseGCLogFileRotation

Another approach is to use the JVM system properties:

20

9 "-XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:/home/GCEASY/gc.log -
XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=2M"

When ‘-XX:-UseGCLogFileRotation’ is passed GC log rotation is enabled by the JVM itself.

‘-XX:NumberOfGClogFiles’ sets the number of files to use when rotating logs, must be >= 1. The
rotated log files will use the following naming scheme, <filename>.0, <filename>.1, …, <filename>.n-1.

‘-XX:GCLogFileSize’ defines the size of the log file at which point the log will be rotated, must be >= 8K

But this strategy has few challenges:

a. Losing old GC Logs
Suppose if you had configured -XX:NumberOfGCLogFiles=5 then, over a period of time, 5 GC log files
will be created:

gc.log.0 — oldest GC Log content
gc.log.1
gc.log.2
gc.log.3
gc.log.4 — latest GC Log content

Most recent GC log contents will be written to ‘gc.log.4’ and old GC log content will be present in
‘gc.log.0’.

When the application starts to generate more GC logs than the configured ‘-XX:NumberOfGCLogFiles’
in this case 5, then old GC log contents in gc.log.0 will be deleted. New GC events will be written to
gc.log.0. It means you will end up not having all the generated GC logs. You will loose the visibility of
all events.

b. Mixed-up GC Logs

Suppose application has created 5 gc log files i.e.

gc.log.0
gc.log.1
gc.log.2
gc.log.3
gc.log.4

then, let’s say you are restarting the application. Now new GC logs will be written to gc.log.0 file and
old GC log content will be present in gc.log.1, gc.log.2, gc.log.3, gc.log.4 i.e.

21

gc.log.0 — GC log file content after restart
gc.log.1 — GC log file content before restart
gc.log.2 — GC log file content before restart
gc.log.3 — GC log file content before restart
gc.log.4 — GC log file content before restart

So your new GC log contents get mixed up with old GC logs. Thus to mitigate this problem you
might have to move all the old GC logs to a different folder before you restart the application.

c. Forwarding GC logs to central location

In this approach, current active file to which GC logs are written is marked with extension “.current”.
Example, if GC events are currently written to file ‘gc.log.3’ it would be named as: ‘gc.log.3.current‘.

If you want to forward GC logs from each server to a central location, then most DevOps engineers
uses ‘rsyslog’. However this file naming convention poses significant challenge to use ‘rsyslog’.

d. Tooling

Now to analyze the GC log file using the GC tools such as (gceasy.io, GCViewer….), you will have to
upload multiple GC log files instead of just one single GC Log file.

Conclusion
You can debate on which approach you want to take for rotating GC log files, but don’t debate on
whether to rotate the GC log files or not. It will come very handy when need comes. You never
know when need comes.

REDUCE LONG GC PAUSES 10
Long GC Pauses are undesirable for applications. It a°ects your SLAs; it results in poor customer
experiences, and it causes severe damages to mission critical applications. Thus in this article, I have
laid out key reasons that can cause long GC pauses and potential solutions to solve them.

1. High Object Creation Rate
If your application’s object creation rate is very high, then to keep with it, garbage collection rate will
also be very high. High garbage collection rate will increase the GC pause time as well. Thus,
optimizing the application to create less number of objects is THE EFFECTIVE strategy to reduce long
GC pauses. This might be a time-consuming exercise, but it is 100% worth doing. In order to optimize
object creation rate in the application, you can consider using java profilers like JProfiler, YourKit,
JVisualVM….). These profilers will report

• What are the objects that created?
• What is the rate at which these objects are created?
• What is the amount of space they are occupying in memory?
• Who is creating them?

Tit-bit: How to figure out object creation rate?

Upload your GC log to the Universal Garbage Collection
log analyzer tool GCEasy. This tool will report the object
creation rate. There will be field by name ‘Avg creation
rate’ in the section ‘Object Stats.’ This field will report the
object creation rate. Strive to keep this value lower always.
See the image (which is an excerpt from the GCEasy
generated report), showing the ‘Avg creation rate’ to be
8.83 mb.sec.

2. Undersized Young Generation
When young Generation is undersized, objects will be prematurely promoted to Old Generation.
Collecting garbage from old generation takes more time than collecting it from young Generation.
Thus increasing young generation size has a potential to reduce the long GC pauses. Young
Generation can be increased setting either one of the two JVM arguments
-Xmn: specifies the size of the young generation
-XX:NewRatio: Specifies ratio between the old and young generation. For example, setting
-XX:NewRatio=3 means that the ratio between the old and young generation is 3:1. i.e. young
generation will be fourth of the overall heap. i.e. if heap size is 2 GB, then young generation size
would be 0.5 GB.

22

3. Choice of GC Algorithm

4. Process Swapping

Choice of GC algorithm has a major influence on the GC pause time. Unless you are a GC expert or
intend to become one or someone in your team is a GC expert – you can tune GC settings to obtain
optimal GC pause time. Assume if you don’t have GC expertise, then I would recommend using G1 GC
algorithm, because of it’s auto-tuning capability. In G1 GC, you can set the GC pause time goal using
the system property ‘-XX:MaxGCPauseMillis.’ Example:

-XX:MaxGCPauseMillis=200

As per the above example, Maximum GC Pause time is set to 200 milliseconds. This is a soft goal,
which JVM will try it’s best to meet it.

Sometimes due to lack of memory (RAM), Operating system could be swapping your application from
memory. Swapping is very expensive as it requires disk accesses which is much slower as compared
to the physical memory access. In my humble opinion – no serious application in a production
environment should be swapping. When process swaps, GC will take a long time to complete.
Below is the script obtained from StackOverflow (thanks to the author) – which when executed will
show all the process that are being swapped. Please make sure your process is not getting swapped.

#!/bin/bash
Get current swap usage for all running processes
Erik Ljungstrom 27/05/2011
Modified by Mikko Rantalainen 2012-08-09
Pipe the output to "sort -nk3" to get sorted output
Modified by Marc Methot 2014-09-18
removed the need for sudo

SUM=0
OVERALL=0
for DIR in `find /proc/ -maxdepth 1 -type d -regex "^/proc/[0-9]+"`
do
 PID=`echo $DIR | cut -d / -f 3`
 PROGNAME=`ps -p $PID -o comm --no-headers`
 for SWAP in `grep VmSwap $DIR/status 2>/dev/null | awk '{ print $2 }'`
 do
 let SUM=$SUM+$SWAP
 done
 if (($SUM > 0)); then
 echo "PID=$PID swapped $SUM KB ($PROGNAME)"
 fi

If you find your process to be swapping then do one of the following:
a. Allocate more RAM to the server
b. Reduce the number of processes that running on the server, so that it can free up the memory
(RAM).
c. Reduce the heap size of your application (which I wouldn’t recommend, as it can cause other side
e°ects).

23

5. Less GC Threads

For every GC event reported in the GC log, user, sys and real time are printed. Example:

[Times: user=25.56 sys=0.35, real=20.48 secs]

[Times: user=0.20 sys=0.01, real=18.45 secs]

sar -d -p 1

To know the di°erence between each of these times, please read the article . (I highly encourage you
to read the article, before continuing this section). If in the GC events you consistently notice that ‘real’
time isn’t significantly lesser than the ‘user’ time – then it might be indicating that there aren’t enough
GC threads. Consider increasing the GC thread count. Say suppose ‘user’ time 25 seconds, and you
have configured GC thread count to be 5, then real time should be close to 5 seconds (because 25
seconds / 5 threads = 5 seconds).

WARNING: Adding too many GC threads will consume a lot of CPU and takes away a resource from
your application. Thus you need to conduct thorough testing before increasing the GC thread count.

6. Background IO Tra�c
If there is a heavy file system I/O activity (i.e. lot of reads and writes are happening) it can also cause
long GC pauses. This heavy file system I/O activity may not be caused by your application. Maybe it is
caused by another process that is running on the same server, still, can cause your application to
su°er from long GC pauses. Here is a brilliant article from Link edIn Engineers, which walks through
this problem in detail.

When there is a heavy I/O activity, you will notice the ‘real’ time to be significantly more than ‘user’
time. Example:

When this pattern happens, here are the potential solutions to solve it:
a. If high I/O activity is caused by your application, then optimize it.
b. Eliminate the processes which are causing high I/O activity on the server
c. Move your application to a di°erent server where I/O activity is less

Tit-bit: How to monitor I/O activity?
You can monitor I/O activity, using the sar (System Activity Report), in Unix. Example:

Above commands reports the reads/sec and writes/sec made to the device every 1 second.

7. System.gc() calls
When System.gc() or Runtime.getRuntime().gc() method calls are invoked it will cause stop-the-world
Full GCs. During stop-the-world full GCs, entire JVM is freezed (i.e. No user activities will be performed
during period). System.gc() calls are made from one of the following sources:

1. Your own application developers might be explicitly calling System.gc() method.
2. It could be 3rd party libraries, frameworks, sometimes even application servers that you use could

be invoking System.gc() method.

24

25

3. It could be triggered from external tools (like VisualVM) through use of JMX
4. If your application is using RMI, then RMI invokes System.gc() on a periodic interval. This interval can

be configured using the following system properties:
– Dsun.rmi.dgc.server.gcInterval=n
– Dsun.rmi.dgc.client.gcInterval=n

Evaluate whether it’s absolutely necessary to explicitly invoke System.gc(). If there is no need to then,
please remove it. On the other hand, you can forcefully disable the System.gc() calls by passing the
JVM argument: ‘-XX:+DisableExplicitGC‘.

Tit-bit: How to know whether System.gc() calls are explicitly called?

Upload your GC log to the Universal Garbage Collection log
analyzer tool GCEasy. This tool has a section called ‘GC
Causes.’ If GC activity is triggered because of ‘System.gc()’
calls then it will be reported in this section. See the image
(which is an excerpt from the GCEasy generated report),
showing that System.gc() was made 4 times during the
lifetime of this application.

8. Large Heap size
Large heap size (-Xmx) can also cause long GC pauses. If heap size is quite high, then more garbage
will be get accumulated in the heap. When Full GC is triggered to evict the all the accumulated
garbage in the heap, it will take long time to complete. Logic is simple: If you have small can full of
trash, it’s going to be quick and easy to dispose them. On the other hand if you have truck load of
trash, it’s going to take more time to dispose them.

Suppose your JVMs heap size is 18GB, then consider having three 6 GB JVM instances, instead of one
18GB JVM. Small heap size has great potential to bring down the long GC pauses.

CAUTION: All of the above mentioned strategies should be rolled to production only after thorough
testing & analysis. All strategies may not apply to your application. Improper usage of these strategies
can result in negative results.

26

WHICH GC TO USE? 11
������������������

27

THREADS

HOW TO TAKE THREAD
DUMPS? – 8 OPTIONS 12
Thread dumps are vital artifacts to diagnose CPU spikes, deadlocks, poor response times, memory
problems, unresponsive applications, and other system problems. There are great online thread dump
analysis tools such as http://fastthread.io/, which can analyse and spot problems. But to those tools
you need provide proper thread dumps as input. Thus in this article, I have documented 8 di°erent
options to capture thread dumps.

1. jstack
‘jstack’ is an e°ective command line tool to capture thread dumps. jstack tool is shipped in
JDK_HOMEbin folder. Here is the command that you need to issue to capture thread dump:

jstack -l <pid> > <file-path>

jstack -l 37320 > /opt/tmp/threadDump.txt

kill -3 <pid>

where

pid: is the Process Id of the application, whose thread dump should be captured

file-path: is the file path where thread dump will be written in to.
Example:

As per the example thread dump of the process would be generated in /opt/tmp/threadDump.txt file.

Jstack tool is included in JDK since Java 5. If you are running in older version of java, consider using
other options

2. Kill -3
In major enterprises for security reasons only JREs are installed on production machines. Since jstack
and other tools are only part of JDK, you wouldn’t be able to use jstack tool. In such circumstances ‘kill
-3’ option can be used.

where

pid: is the Process Id of the application, whose thread dump should be captured

Example:

Kill -3 37320

When ‘kill -3’ option is used thread dump is sent to the standard error stream. If you are running your
application in tomcat, thread dump will be sent into <TOMCAT_HOME>/logs/catalina.out file.
Note: To my knowledge this option is supported in most flavours of *nix operating systems (Unix,
Linux, HP-UX operating systems). Not sure about other Operating systems.

3. JVisualVM
Java VisualVM is a graphical user interface tool that provides detailed information about the
applications while they are running on a specified Java Virtual Machine (JVM). It’s located in
JDK_HOMEbinjvisualvm.exe. It’s part of Sun’s JDK distribution since JDK 6 update 7.s
Launch the jvisualvm. On the left panel, you will notice all the java applications that are running on
your machine. You need to select your application from the list (see the red color highlight in the
below diagram). This tool also has the capability to capture thread dumps from the java processes that
are running on the remote host as well.

Now go to the “Threads” tab. Click on the “Thread Dump” button as shown in the below image. Now
Thread dumps would be generated.

28

29

4. JMC
Java Mission Control (JMC) is a tool that collects and analyze data from Java applications running
locally or deployed in production environments. This tool has been packaged into JDK since Oracle
JDK 7 Update 40. This tool also provides an option to take thread dumps from the JVM. JMC tool is
present in JDK_HOMEbinjmc.exe

Once you launch the tool, you will see all the Java processes that are running on your local host. Note:
JMC also can connect with java processes running on the remote host. Now on the left panel click on
the “Flight Recorder” option that is listed below the Java process for which you want to take thread
dumps. Now you will see the “Start Flight Recording” wizard, as shown in the below figure.

Here in the “Thread Dump” field, you can select the interval in which you want to capture thread
dump. As per the above example, every 60 seconds thread dump will be captured. After the selection
is complete start the Flight recorder. Once the recording is complete, you will see the thread dumps in
the “Threads” panel, as shown in the figure next page.

30

5. Windows (Ctrl + Break)
This option will work only in Windows Operating system.

Select command line console window in which you have launched application.
Now on the console window issue the “Ctrl + Break” command.
This will generate thread dump. A thread dump will be printed on the console window itself.

Note 1: in several laptops (like my Lenovo T series) “Break” key is removedJ. In such circumstance,
you have to google to find the equivalent keys for the “Break.” In my case, it turned out that “Function
key + B” is the equivalent of “Break” key. Thus I had to use “Ctrl + Fn + B” to generate thread dump.s

Note 2: But one disadvantage with the approach is thread dump will be printed on the windows
console itself. Without getting the thread dump in a file format, it’s hard to use the thread dump
analysis tools such as http://fastthread.io. Thus when you launch the application from the command
line, redirect the output a text file i.e. Example if you are launching the application
“SampleThreadProgram”, you would issue the command:

java -classpath . SampleThreadProgram

java -classpath . SampleThreadProgram > C:workspacethreadDump.txt 2>&1

instead, launch the SampleThreadProgram like this

Thus when you issue “Ctrl + Break” thread dump will be sent to C:workspacethreadDump.txtfile.

31

6. ThreadMXBean
Since JDK 1.5 ThreadMXBean has been introduced. This is the management interface for the thread
system in the Java Virtual Machine. Using this interface also you can generate thread dumps. You only
have to write few lines of code to generate thread dumps programmatically. Below is a skeleton
implementation on ThreadMXBean implementation, which generates Thread dump from the
application.

 public void dumpThreadDump() {
 ThreadMXBean threadMxBean = ManagementFactory.getThreadMXBean();
 for (ThreadInfo ti : threadMxBean.dumpAllThreads(true, true)) {
 System.out.print(ti.toString());
 }
 }

7. APM Tool – App Dynamics
Few Application Performance Monitoring tools provide options to generate thread dumps. If you are
monitoring your application through App Dynamics (APM tool), below are the instructions to capture
thread dump:

1. Create an action, selecting Diagnostics->Take a thread dump in the Create Action window.
2. Enter a name for the action, the number of samples to take, and the interval between the thread
dumps in milliseconds.
3. If you want to require approval before the thread dump action can be started, check the Require
approval before this Action checkbox and enter the email address of the individual or group that is
authorized to approve the action. See Actions Requiring Approval for more information.
4. Click OK.

32

jcmd <pid> Thread.print > <file-path>

jcmd 37320 Thread.print > /opt/tmp/threadDump.txt

where
pid: is the Process Id of the application, whose thread dump should be captured
file-path: is the file path where thread dump will be written in to.
Example:

As per the example thread dump of the process would be generated in /opt/tmp/threadDump.txt file.

Even though 8 di°erent options are listed to capture thread dumps, IMHO , 1. ‘jstack’ and 2. ‘kill -3’ and
8. ‘jcmd’ are the best ones. Because they are:

a. Simple (straightforward, easy to implement)
b. Universal (works in most of the cases despite OS, Java Vendor, JVM version, …)

8. JCMD

Conclusion

The jcmd tool was introduced with Oracle’s Java 7. It’s useful in troubleshooting issues with JVM
applications. It has various capabilities such as identifying java process Ids, acquiring heap dumps,
acquiring thread dumps, acquiring garbage collection statistics, ….

Using the below JCMD command you can generate thread dump:

33

THREAD DUMP
ANALYSIS API 13
In this modern world, thread dumps are still analyzed in a tedious & manual mode i.e., you have to get
hold of DevOps team, ask them to send you the thread dumps, then they will mail you the thread
dumps, then you will upload the dumps in to a thread dump analysis tool, then you have to apply your
intelligence to analyze it. There is no programmatic way to analyze thread dumps in a proactive
manner. Thus to eliminate this hassle, fastthread.io is introducing a RESTful API to analyze thread
dumps. With one line of CURL command, you can get your thread dumps analyzed instantly.

Here are a few use cases where this API can be extremely useful.

Use case 1: Automatic Root cause Analysis

Use case 2: Performance Tests

Most of the DevOps invokes a simple Http ping or APM tools to monitor the applications health. This
ping is good to detect whether application is alive or not. APM tools are great at informing that
application’s CPU spiked up by ‘x%’, memory utilization increased by ‘y%’, response time dropped by
‘z’ milliseconds. It won’t inform what caused the CPU to spike up, what caused memory utilization to
increase, what caused the response time to degrade. If you can configure Cron job to capture thread
dumps/GC logs on a periodic interval and invoke our REST API, we apply our intelligent patterns &
machine learning algorithms to instantly identify the root cause of the problem.

Advantage 1: Whenever these sort of production problem happens, because of the heat of the
moment, DevOps team recycles the servers with out capturing the thread dumps and GC logs. You
need to capture thread dumps and GC logs at the moment when problem is happening, in order to
diagnose the problem. In this new strategy you don’t have to worry about it, because your cron job is
capturing thread dumps/GC logs on a periodic intervals and invoking the REST API, all your thread
dumps/GC Logs are archived in our servers.

Advantage 2: Unlike APM tools which claims to add less than 3% of overhead, where as in reality it
adds multiple folds, beauty of this strategy is: It doesn’t add any overhead (or negligible overhead).
Because entire analysis of the thread dumps/GCeasy are done on our servers and not on your
production servers..

When you conduct performance tests, you might want to take thread dumps/GC logs on a periodic
basis and get it analyzed through the API. In case if thread count goes beyond a threshold or if too
many threads are WAITING or if any threads are BLOCKED for a prolonged period or lock isn’t getting
released or frequent full GC activities happening or GC pause time exceeds thresholds, it needs to get
the visibility right then and there. It should be analyzed before code hits the production. In such
circumstance this API will become very handy.

34

Use case 3: Continuous Integration
As part of continuous integration it’s highly encouraged to execute performance tests. Thread
dumps/GC Logs should be captured and it can be analyzed using the API. If API reports any
problems, then build can be failed. In this way, you can catch the performance degradation right
during code commit time instead of catching it in performance labs or production.

How to invoke Thread dump analysis API?

CURL command

Other Tools

Invoking Thread dump analysis API is very extremely simple:

1. Register with us. We will email you the API key. This is a one-time setup process. Note: If you have
purchased enterprise version with API, you don’t have to register. API key will be provided to you as
part of installation instruction.

2. Post HTTP request to http://api.fastthread.io/fastthread-api?apiKey={API_KEY_SENT_IN_EMAIL}
3. The body of the HTTP request should contain the Thread dump that needs to be analyzed. You can

either send 1 thread dump or multiple thread dumps in the same request.
4. HTTP Response will be sent back in JSON format. JSON has several important stats about the

Thread dump. Primary element to look in the JSON response is: “problem“. API applies several
intelligent thread dump analysis patterns and if it detects any issues, it will reported in this “problem”
element.

Assuming your Thread dump file is located in “./my-thread-dump.txt,” then CURL command to invoke
the API is:

You can also invoke the API using any web service client tools such as: SOAP UI, Postman Browser
Plugin,…..

curl -X POST --data-binary @./my-thread-dump.txt
http://api.fastthread.io/fastthread-api?apiKey={API_KEY_SENT_IN_EMAIL} --header
"Content-Type:text"

It can’t get any more simpler than that? Isn’t it?

35

Sample Response

{
 "problem": [
 {
 "level": "SEVERE",
 "description": "8 thread are looping on same lines of code. If threads loop infinitely on the
same lines of code, CPU consumption will start to spike up"
 }
],
 "threadsRemainingInWaitingState": [
 {
 "method": "java.lang.Object.wait(Native Method)",
 "threadCount": 3,
 "threads": "Reference Handler, Dispatcher-Thread-2, Finalizer"
 },
 {
 "method": "sun.misc.Unsafe.park(Native Method)",
 "threadCount": 2,
 "threads": "New Relic RPM Connection Service, New Relic Retransformer"
 }
],
 "threadDumpReport": [
 {
 "timestamp": "2016-03-03 10:37:28",
 "JVMType": " 64-Bit Server VM (23.7-b01 mixed mode)",
 "threadState": [
 {
 "state": "RUNNABLE",
 "threadCount": 28,
 "threads": "Attach Listener, InvoiceGeneratedQC-A99-6, InvoiceGeneratedQC-H87-6,
InvoiceGeneratedQC-B85-9, InvoiceGeneratedQC-A99-6, InvoiceGeneratedQC-H87-6,
InvoiceGeneratedQC-H87-3, InvoiceGeneratedQC-H87-1, InvoiceGeneratedQC-B85-9, Service
Thread, C2 CompilerThread1, C2 CompilerThread0, Signal Dispatcher, main, VM Thread, GC
task thread#0 (ParallelGC), GC task thread#1 (ParallelGC), GC task thread#2 (ParallelGC), GC
task thread#3 (ParallelGC), GC task thread#4 (ParallelGC), GC task thread#5 (ParallelGC), GC
task thread#6 (ParallelGC), GC task thread#7 (ParallelGC), GC task thread#8 (ParallelGC), GC
task thread#9 (ParallelGC), GC task thread#10 (ParallelGC), GC task thread#11 (ParallelGC), GC
task thread#12 (ParallelGC)"
 },
 {
 "state": "WAITING",
 "threadCount": 6,
 "threads": "Dispatcher-Thread-2, New Relic RPM Connection Service, New Relic
Retransformer, Finalizer, Reference Handler, VM Periodic Task Thread"
 },
 {
 "state": "TIMED_WAITING",

36

HOW TO IDENTIFY
CRITICAL CODE PATH? 14
Before answering the question ‘How to identify critical code path?’ let me answer ‘Why identify critical
code path?’

Why identify critical code path?
There are a couple of answers to it:

1. Performance Optimization
2. Accurate Smoke Test

Performance Optimization
In most applications, we have observed that less than 5% of application code accounts for more than
90% of code execution. Thus, if you can optimize this 5% of code, you can improve your entire
application’s performance significantly. It’s the best ROI. You can save a significant amount of time in
not analyzing the remaining 95% of code.

Accurate Test Suite
You can write highly targeted unit tests to exercise the critical code path and make your application
bullet-proof. In fact, these tests can act as your application’s smoke test. It can be integrated into your
CI/CD pipeline. This sort of accurate test suite reduces over-all test execution time. It can also reduce
the test data setup time in the backend systems.

Now let’s get back to our original question: How to identify critical code path? This is where thread
dumps come handy.

Thread dumps
Thread dumps are the snapshot of all threads running in the application at given moment. It contains
detailed information about each thread including its stack trace. Below is the information provided for
the “InvoiceGeneratedQC-A99-6” thread in the thread dump.

37

Above stack trace tells you the code execution path of the “InvoiceGeneratedQC-A99-6” thread. This
thread has executed 9 methods in the order (1 – 9), as shown in Fig 1. Thread executed the
java.lang.Thread.run() method first, then it went on to execute
java.util.concurrent.ThreadPoolExecutor$Worker.run() method from there it went on to execute other
methods until com.buggycompany.rt.util.ItinerarySegmentProcessor.setConnectingFlight().

If multiple threads execute same code execution path, that code path becomes your critical path. You
can group stack trace of all the threads, combine them together to form one single call stack tree &
from there you can identify the critical code execution path.

Call Stack Tree
Tools like fastThread.io can group stack trace of all the threads and generate one single call stack tree.
You can drill down & up on this tree to see the critical code path. Below is the sample call stack tree
generated by ‘fastThread.io’.

38

Call Stack Tree shows you the class name, method name and line of the code that has been executed
and a number of threads that have executed the line of code.

From the above element in the Call Stack Tree, you can identify that call() method in
buggyCompanyCallable.java is executed by 9 threads. Since 9 threads are executing this method, it’s
a good candidate to be categorized as critical code path.

Note that Call Stack Tree will contain code from Java, external frameworks, and libraries because your
application executes those codes as well. When writing focused tests or optimizing the performance
of the critical code path, you can ignore or give low priority to that external code, as you have very
little control over them.

Best Practices:

Capture thread dumps from production
It’s extremely hard (if not impossible) to mirror production tra˛c in a test environment. As you need to
identify the critical code execution path in production, it’s ideal to capture thread dumps from
production environment instead of test or other lower environments.

Capture thread dumps during peak volume time
It’s ideal to capture thread dumps during peak volume time period. It’s where you can observe
maximum possibilities of application code exercise.

Capture 3 – 5 thread dumps
As thread dump is a snapshot of a particular point in time, it’s ideal to capture at least 3 – 5 thread
dumps to see few possibilities of code execution path. There are multiple options to capture thread
dumps. Use your favorite option to capture the thread dump.

39

15WHAT’S THE DIFFERENCE
BETWEEN BLOCKED, WAITING,
AND TIMED_WAITING? –
EXPLAINED TO
REAL-LIFE EXAMPLES
BLOCKED, WAITING, and TIMED_WAITING are important thread states, but often confusing to many of
us. One must have a proper understanding of both in order to analyze thread dumps. Using real-life
examples, this article breaks down each state into simpler terms.
Any confusing concepts can be easily understood through examples rather than formal definitions
given in Java doc. If they are real-life examples, it can be even more relatable. I would like to share
some real-life examples which might help to understand these thread states.

BLOCKED
Java doc formally defines BLOCKED state as: “A thread that is blocked waiting for a monitor lock is in
this state.”

Real-life example: Today you are going for a job interview. This is your dream job, which you
have been targeting for last few years. You woke up early in the morning, got ready, put on your best
outfit, looking sharp in front of the mirror. Now you step out to your garage and realize that your wife
has already taken the car. In this scenario, you only have one car, so what will happen? In real life, a
fight may happen. However, you are BLOCKED because your wife has already taken the car. You won’t
be able to go to the interview.

This is the BLOCKED state. Explaining it in technical terms, you are the thread T1 and your wife is
the thread T2 and lock is the car. T1 is BLOCKED on the lock (i.e. the car) because T2 has already
acquired this lock.

Titbit: A Thread will enter into BLOCKED state when it’s waiting for a monitor lock to enter a
synchronized block/method or reenter a synchronized block/method after calling Object#wait()
method.

WAITING
Java doc formally defines WAITING state as: “A thread that is waiting indefinitely for another thread to
perform a particular action is in this state.”

Real-life example: Let’s say a few minutes later your wife comes back home with the car. Now
you realize that the interview time is approaching, and there is a long distance to drive to get there.
So, you put all the power on the gas pedal in the car. You drive at 100 mph when the allowed speed
limit is only 60 mph. Your luck, a tra˛c cop sees you driving over the speed limit, and he pulls you
over to the curb. Now you are entering into the WAITING state, my friend. You stop driving the car and
sit idly in the car until the cop investigates you and then lets you go. Basically, until he lets you go, you
are stuck in the WAITING state.

Explaining it in technical terms, you are thread T1 and the cop is thread T2. You released your lock (i.e.
you stopped driving the car) and went into the WAITING state. Until the cop (i.e. T2) lets you go, you

will be stuck in this WAITING state.

Titbit: A Thread will enter into WAITING state when it’s calling one of the following methods:

Object#wait() with no timeout
Thread#join() with no timeout
LockSupport#park()
Thread that has called Object.wait() on an object is in WAITING state until another thread to call
Object.notify() or Object.notifyAll() on that object. A thread that has called Thread.join() is inWAITING
state for a specified thread to terminate.

40

TIMED_WAITING

Java doc formally defines TIMED_WAITING state as: “A thread that is waiting for another thread to
perform an action for up to a specified waiting time is in this state.”

Real-life example: Despite all the drama, you did extremely well in the interview, impressed
everyone and got this high paying job. (Congratulations!) You come back home and tell your neighbor
about this new job and how excited you are about it. Your friend says that he is also working in the
same o˛ce building. He suggests that the two of you should drive together . You think it’s a great idea.
So on the first day of work, you go to his house. You stop your car in front of his house. You wait for 10
minutes, but your neighbor still doesn’t come out. You go ahead and start driving to work, as you don’t

want to be delayed on your first day. Now this is TIMED_WAITING.

Explaining it in technical terms, you are thread T1, and your neighbor is thread T2. You release the
lock(i.e. stop driving the car) and wait up to 10 minutes. If your neighbor, T2, doesn’t come out in 10
minutes, you start driving the car again.

Titbit: A Thread will enter into TIMED_WAITING state when it’s calling one of the following methods:

Thread#sleep()
Object#wait() with timeout
Thread#join() with timeout
LockSupport#parkNanos()
LockSupport#parkUntil()

Conclusion
When someone is analyzing thread dumps, understanding these di°erent thread states are critical.
How many threads are in RUNNABLE, BLOCKED, WAITING, and TIMED_WATING states? Which
threads are blocked? Who is blocking them? What object used for locking? These are some of the
important metrics to be analyzed in thread dumps. These kinds of detailed thread dump analyses can
easily be done through an online tool such as http://fastthread.io/

41

THREAD DUMP ANALYSIS
PATTERN – ATHLETE 16
Description

Example

Threads in ‘runnable’ state consume CPU. So when you are analyzing thread dumps for high CPU
consumption, threads in ‘runnable’ state should be thoroughly reviewed.Typically in thread dumps
several threads are classified in ‘RUNNABLE’ state. But in reality several of them wouldn’t be actually
running, rather they would be just waiting. But still, JVM classifies them in ‘RUNNABLE’ state. You need
to learn to di°erentiate from really running threads with pretending/misleading RUNNABLE threads.

Below is the real world thread dump excerpt. In these stack traces, threads aren’t actually in
‘RUNNABLE’ state. i.e. they are not actively executing any code. They are just waiting on the sockets
to read or write. It’s because JVM doesn’t really know what thread is doing in a native method, JVM
classifies them in ‘RUNNABLE’ state. Real running threads would consume CPU, whereas these
threads are on I/O wait, which don’t consume any CPU.

WorkerThread#27[10.201.1.55:56893] - priority:10 - threadId:0x00002b59983cb000 -
nativeId:0x4482 - addressSpace:null - state:RUNNABLE
stackTrace:
java.lang.Thread.State: RUNNABLE
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.__AW_read(SocketInputStream.java:129)
at java.net.SocketInputStream.read(SocketInputStream.java)
at java.io.Bu°eredInputS tream.fill(Bu°eredInputS tream.java:218)
at java.io.Bu°eredInputS tream.read(Bu°eredInputS tream.java:237)
- locked (a java.io.Bu°eredInputS tream)
at java.io.DataInputStream.readByte(DataInputStream.java:248)
at
org.jboss.jms.server.remoting.ServerSocketWrapper.checkConnection(ServerSocketWrapper.java
:94)
at org.jboss.remoting.transport.socket.ServerThread.acknowledge(ServerThread.java:857)
at org.jboss.remoting.transport.socket.ServerThread.dorun(ServerThread.java:585)
at org.jboss.remoting.transport.socket.ServerThread.run(ServerThread.java:234)

42

multicast receiver,GATES-RefData-Infinispan-Cluster,matcamupa67-vm-46719 - priority:10 -
threadId:0x00002b597c1ba800 - nativeId:0x3034 - addressSpace:null - state:RUNNABLE
stackTrace:
java.lang.Thread.State: RUNNABLE
at java.net.PlainDatagramSocketImpl.receive0(Native Method)
- locked (a java.net.PlainDatagramSocketImpl)
at java.net.PlainDatagramSocketImpl.receive(PlainDatagramSocketImpl.java:145)
- locked (a java.net.PlainDatagramSocketImpl)
at java.net.DatagramSocket.receive(DatagramSocket.java:725)
- locked (a java.net.DatagramPacket)
- locked (a java.net.MulticastSocket)
at org.jgroups.protocols.UDP$PacketReceiver.__AW_run(UDP.java:675)
at org.jgroups.protocols.UDP$PacketReceiver.run(UDP.java)
at java.lang.Thread.run(Thread.java:662)

Why named as Athlete Pattern?
Wikipedia defines Athlete as a person who competes in one or more sports that involve physical
strength, speed, and/or endurance. Athlete consumes high energy, similarly really RUNNABLE threads
consumes high CPU, whereas pretending RUNNABLE threads don’t.

43

DEADLOCK 17
Description

Example

Wikipedia aptly defines deadlock is a situation in which two or more competing actions are each
waiting for the other to finish, and thus neither ever does. If deadlock happens in a JVM, the only way
to recover from the situation is to restart the JVM.

Here is a sample code which simulates deadlock condition in-between two threads:

package com.tier1app;

public class DeadLockSimulator {
 public static Object Lock1 = new Object();
 public static Object Lock2 = new Object();
 private static class FirstThread extends Thread {
 public void run() {
 synchronized (Lock1) {

 System.out.println("Threadolding lock 1...");
 try { Thread.sleep(10); } catch (Exception e) {}
 System.out.println("Threadaiting for lock 2...");

 synchronized (Lock2) {

 System.out.println("Threadolding lock 1 & 2...");
 }

 }
 }
 }
 }

 private static class SecondThread extends Thread {
 public void run() {

 synchronized (Lock2) {
 System.out.println("Threadolding lock 2...");
 try { Thread.sleep(10); } catch (Exception e) {}
 System.out.println("Threadaiting for lock 1...");
 synchronized (Lock1) {

 System.out.println("Threadolding lock 1 & 2...");
 }

 }
 }

}

44

In the above code following is the execution path of ‘FirstThread‘:

1. Acquires lock on the Lock1 object
2. Sleeps for 10 seconds interval
3. Acquires lock on Lock2 object

Following is the execution path of ‘SecondThread‘:

1. Acquires lock on the Lock2 object
2. Sleeps for 10 seconds interval
3. Acquires lock on Lock1 object

If you read the above execution path carefully, FirstThread after executing step #1, it would have
moved on to step #2. When it is in step #2, SecondThread would have executed it’s step #1. So by the
time FirstThread wakes up and executes it’s step #3 (i.e. trying to acquire Lock2), SecondThread
would have already acquired lock on Lock2. Similarly, SecondThread executes it’s step #3 (i.e. trying
to acquire Lock1), FirstThread has already acquired lock on Lock1. Thus it results in classic deadlock
situation. The only way to recover from this situation is to restart the JVM.

Thread dump captured on the above code would look like:

"Thread-1" prio=6 tid=0x0000000007319000 nid=0x7cd3c waiting for monitor entry
[0x0000000008a3f000]
 java.lang.Thread.State: BLOCKED (on object monitor)
at com.tier1app.DeadLockSimulator$SecondThread.run(DeadLockSimulator.java:29)
- waiting to lock 0x00000007ac3b1970 (a java.lang.Object)
- locked 0x00000007ac3b1980 (a java.lang.Object)
Locked ownable synchronizers:
- None
"Thread-0" prio=6 tid=0x0000000007318800 nid=0x7da14 waiting for monitor entry
[0x000000000883f000]
 java.lang.Thread.State: BLOCKED (on object monitor)
at com.tier1app.DeadLockSimulator$FirstThread.run(DeadLockSimulator.java:16)
- waiting to lock 0x00000007ac3b1980 (a java.lang.Object)
- locked 0x00000007ac3b1970 (a java.lang.Object)
Locked ownable synchronizers:
- None

45

THREAD DUMP ANALYSIS
PATTERN – TREADMILL 18
Description

Example

You might have experienced the application’s CPU to spike up suddenly & spike wouldn’t go down
until JVM is recycled. You restart the JVM, after certain time period CPU consumption would once
again start to spike up. Then you will have to recycle the JVM once again. Have you experienced it? If
you have smile on your face now, then it’s certain you would have experienced this problem.
This type of problem typically happens when thread spins on an infinite loop. A thread would be
spinning infinitely when one of the issues described in this article happens.
To diagnose these sort of problems, you would have to capture 3 thread dumps in an interval of 10
seconds. In between those thread dumps, if there are threads

a. on the same method (or one the same line of code)
b. they are in ‘RUNNABLE’ state,

then those are the threads which are causing CPU to spike up. Investigating the stack trace of those
threads will tell the exact method (or line of code), where threads are spinning. Fixing that particular
method (or line of code) would resolve the problem.

HashMap isn’t threaded safe implementation. When multiple threads try to access HashMap’s get()
and put() APIs concurrently it would cause threads go into infinite looping. This problem doesn’t
happen frequently, but it does happen.

Below is an excerpt from a thread dump which indicates the infinite looping that is happening in
HashMap:

"Thread-0";quot; prio=6 tid=0x000000000b583000 nid=0x10adc runnable
[0x000000000cb6f000]
 java.lang.Thread.State: RUNNABLE
 at java.util.HashMap.put(HashMap.java:374)
 at
com.tier1app.HashMapLooper$AddForeverThread.AddForever(NonTerminatingLooper.java:32)
 at com.tier1app.HashMapLooper$AddForeverThread.method2(NonTerminatingLooper.java:27)
 at com.tier1app.HashMapLooper$AddForeverThread.method1(NonTerminatingLooper.java:22)
 at com.tier1app.NonTerminatingLooper$LoopForeverThread.run(NonTerminatingLooper.java:16)

46

Across all the 3 thread dumps “Thread-0” was always exhibiting same stack trace. i.e. it was always in
the java.util.HashMap.put(HashMap.java:374) method. This problem was addressed by replacing the
HashMap with ConcurrentHashMap.

In Treadmill, one would keep running without moving forward. Similarly, when there is infinite looping,
CPU consumption goes high without progress in the code execution path. Thus it’s named as
‘Treadmill’ pattern.

Why named as Treadmill?

47

19THREAD DUMP ANALYSIS
PATTERN –ATHEROSCLEROSIS

Description
If threads are blocking momentarily, then it’s not a problem. However, if they are blocking for a
prolonged period, then it’s of concern. It’s indicative of some problem in the application. Typically
blocked threads would make application unresponsive.

Threads that remain in the same method and in ‘BLOCKED’ state between 3 threads dump which are
captured in an interval of 10 seconds can turn out to be problematic ones. Studying the stack traces of
such blocked threads would indicate the reasons why they are blocked. Reasons may include:
deadlocks, circular deadlocks, another thread, would have acquired the locked and never released it,
external SORs could have become unresponsive …

Example
Following is the excerpt of a thread dump that was captured from a major SOA application, which
became unresponsive. The thread ajp-bio-192.168.100.128-9022-exec-173 remained in BLOCKED state
for 3 consecutive thread dumps which were captured in an interval of 10 seconds. Here goes the
important parts of Stack trace of this thread:

ajp-bio-192.168.100.128-9022-exec-173
Stack Trace is:
java.lang.Thread.State: BLOCKED (on object monitor)
at
.*.sp.dao.impl.ReferenceNumberGeneratorDaoImpl.getNextItineryReferenceNumber(Referen
ceNumberGeneratorDaoImpl.java:55)
- waiting to lock 0x00000006afaa5a60 (a
.*.sp.dao.impl.ReferenceNumberGeneratorDaoImpl)
at sun.reflect.GeneratedMethodAccessor3112.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:601)
at
org.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:307)
:
:
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:722)

48

Here you can notice that ajp-bio-192.168.100.128-9022-exec-173 stuck in the method
.*.sp.dao.impl.ReferenceNumberGeneratorDaoImpl.getNextItineryReferenceNumber(ReferenceNum
berGeneratorDaoImpl.java:55). This thread got stuck in this method, because another thread
ajp-bio-192.168.100.128-9022-exec-84 after obtaining the lock 0x00000006afaa5a60, it never
returned back. Below goes the stack trace of ajp-bio-192.168.100.128-9022-exec-84 thread

Atherosclerosis is a heart disease. Medically it’s defined as the following: the inside walls of human
arteries are normally smooth and flexible, allowing blood to flow through them easily. Fatty deposits,
or plaques, may build up inside the arterial wall. These plaques narrow the artery and can reduce or
even completely stop the flow of blood, leading to death.

Similarly if blocking of a thread prolongs and happens across multiple threads, then it would make the
application unresponsive, eventually, it has to be killed.

Why named as Atherosclerosis?

49

THREAD DUMP ANALYSIS
PATTERN – TRAFFIC JAM
Description

Example

Thread-A could have acquired the lock-1 and then would never release it. Thread-B could have
acquired lock-2 and waiting on this lock-1. Thread-C could be waiting to acquire lock-2. This kind of
transitive blocks between threads can make entire application unresponsive. See the real-world
example below.

Below is a real-world example taken from a major travel application. Here ‘Finalizer’ thread was
waiting for a lock that was held by ‘ajp-bio-192.168.100.41-7078-exec-40‘ thread.
ajp-bio-192.168.100.41-7078-exec-40 and several other threads were waiting for the lock which took
place by ‘ajp-bio-192.168.100.41-7078-exec-12‘ thread.
Thus ‘ajp-bio-192.168.100.41-7078-exec-12’ has transitively blocked 42 threads in total. This ripple e°ect
caused the entire application to become unresponsive. Apparently, it turned out
‘ajp-bio-192.168.100.41-7078-exec-12’ was blocked indefinitely because of a bug in an APM monitoring
agent (Ruxit). Upgrading the agent version to latest version resolved the problem. This is quite an
irony because – APM monitoring agents are meant to prevent/isolate these sort of issues, but in this
case, they themselves are causing the issue. It’s like a law enforcement breaking the laws.

50

20

Why named as Tra�c Jam?
Tra˛c Jam typically happens when there is an accident in the front. Due to that, all the cars that are
following the front car will also get stranded. This is very analogous to the transitive blocks behavior
described here.

51

52

21THREAD DUMP ANALYSIS
PATTERN – REPETITIVE
STRAIN INJURY (RSI)

Description
When there is a performance bottleneck in the application, most of the threads will start to accumulate
on that problematic bottleneck area. Those threads will have same stack trace. Thus whenever a
significant number of threads exhibit identical/repetitive stack trace then those stack trace should be
investigated. It may be indicative of performance problems.
Here are few such scenarios:

1. Say your SOR or external service is slowing down then a significant number of threads will start to
wait for its response. In such circumstance, those threads will exhibit same stack trace.

2. Say a thread acquired a lock & it never released then, then several other threads which are in the
same execution path will get into the blocked state, exhibiting same stack trace.

3. If a loop (for loop, while loop, do..while loop) condition doesn’t terminate then several threads which
execute that loop will exhibit the same stack trace.

When any of the above scenarios occurs application’s performance, and availability will be questioned.

Example
Below is an excerpt from a thread dump of a major B2B application. This application was running fine,
but all of a sudden it became unresponsive. Thread dump from this application was captured. It
revealed that 225 threads out of 400 threads were exhibiting same stack trace. Here goes that stack
trace:

Why named as RSI?
A Repetitive Strain Injury (RSI) happens when you exercise your body parts (hand, fingers, wrist,
neck,…) repeatedly in a wrong posture. Similarly when there is a performance bottleneck, multiple
threads will start to exhibit the stack trace again & again. Those stack trace should be studied in detail.

53

"ajp-bio-192.168.100.128-9022-exec-79" daemon prio=10 tid=0x00007f4d2001c000 nid=0x1d1c
waiting for monitor entry [0x00007f4ce91fa000]
 java.lang.Thread.State: BLOCKED (on object monitor)
at
com.xxxxxxxxx.xx.xxx.xxxx.ReferenceNumberGeneratorDaoImpl.getNextItineryReferenceNumb
er(ReferenceNumberGeneratorDaoImpl.java:55)
- waiting to lock 0x00000006afaa5a6
(acom.xxxxxxxxx.sp.dao.impl.ReferenceNumberGeneratorDaoImpl)
at sun.reflect.GeneratedMethodAccessor3112.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:601)
at org.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:307)
at
org.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint(ReflectiveMet
hodInvocation.java:182)
at
org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInv
ocation.java:149)
at
org.springframework.orm.hibernate3.HibernateInterceptor.invoke(HibernateInterceptor.java:111)
at
org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInv
ocation.java:171)
at
org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:2
04)
at com.sun.proxy.$Proxy36.getNextItineryReferenceNumber(Unknown Source)
at
com.xxxxxxxxx.xx.xxxxxxxx.xxx.ReferenceNumberGeneratorServiceImpl.getNextItineryReferenc
eNumber(ReferenceNumberGeneratorServiceImpl.java:15)
:
:

From the stack trace, you can infer that thread was blocked and waiting for the lock on the object
0x00000006afaa5a60. 225 such threads were waiting to obtain lock on this same object. It’s
definitely a bad sign. It’s a clear indication of thread starvation.

Apparently this lock was held by “ajp-bio-192.168.100.128-9022-exec-84˙. Below is the stack trace this
thread. You can notice that this thread acquired the lock on the object 0x00000006afaa5a60, but
after acquiring the lock, it got stuck waiting for response from the database. Apparently for this
application database timeout wasn’t set. Due to that this thread’s database call never returned back.
Due to that 225 other threads were stuck. Thus application became unresponsive.

After setting proper database time out value, this problem went away.

Description

Example

Why named as additives?

It’s highly recommended to capture 3 threads dumps in an interval of 10 seconds to uncover any
problem in the JVM. If in the 2nd and 3rd thread dump if additional threads start to go into a particular
state, then those threads and their stack traces have to be studied in detail. It may or may not be
indicative of certain problem in the application, but definitely, a good lead to follow.

This problem surfaced because of a thread leak in Oracle JDBC Driver when ONS feature was turned
ON. This problem happened in an old version of Oracle JDBC Driver (almost in 2011). Because of the
bug in the driver, under certain scenarios, it started to spawn tonnes of new threads. In every captured
thread dump new threads in RUNNABLE stated with below stack trace got added. Around 1700
threads with the same stack trace got created.

Additives are defined as ‘a substance added to something in small quantities’. Similarly, this pattern
talks above addition of new threads to an existing state.

THREAD DUMP ANALYSIS
PATTERN – ADDITIVES

Thread-6805 - priority:8 - threadId:0x07768000 - nativeId:10966 - addressSpace:null -
state:RUNNABLE
stackTrace:
java.lang.Thread.State: RUNNABLE
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(SocketInputStream.java:155)
at java.net.SocketInputStream.read(SocketInputStream.java:121)
at oracle.ons.InputBu°er .readMoreData(InputBu°er .java:268)
at oracle.ons.InputBu°er .getNextString(InputBu°er .java:223)
at oracle.ons.ReceiverThread.run(ReceiverThread.java:266)

54

22

THREAD DUMP ANALYSIS

Description

Example

Objects that have finalize() method are treated di°erently during Garbage collection process than the
ones which don’t have them. During garbage collection phase, object with finalize() aren’t immediately
evicted from the memory. Instead as first step, those objects are added to an internal queue of
java.lang.ref.Finalizer object. There is a low priority JVM thread by name ‘Finalizer’ that executes
finalize() method of each object in the queue. Only after the execution of finalize() method, object
becomes eligible for Garbage Collection. Because of poor implementation of finalize() method if
Finalizer thread gets blocked then it will have a severe detrimental cascading e°ect on the JVM.

If Finalizer thread gets blocked then internal queue of java.lang.ref.Finalize will start to grow. It would
cause JVM’s memory consumption to grow rapidly. It would result in OutOfMemoryError, jeopardizing
entire JVM’s availability. Thus when analyzing thread dumps it’s highly recommended to study the
stack trace of Finalizer thread.

Here is a sample stack trace of a Finalizer thread which got blocked in a finalize() method:

"Finalizer" daemon prio=10 tid=0x00007ˆ2dc32b000 nid=0x7a21 waiting for monitor entry
[0x00007ˆ2cdcb6000]
 java.lang.Thread.State: BLOCKED (on object monitor)
at net.sourceforge.jtds.jdbc.JtdsConnection.releaseTds(JtdsConnection.java:2024)
- waiting to lock 0x00000007d50d98f0 (a net.sourceforge.jtds.jdbc.JtdsConnection)
at net.sourceforge.jtds.jdbc.JtdsStatement.close(JtdsStatement.java:972)
at net.sourceforge.jtds.jdbc.JtdsStatement.finalize(JtdsStatement.java:219)
at java.lang.ref.Finalizer.invokeFinalizeMethod(Native Method)
at java.lang.ref.Finalizer.runFinalizer(Finalizer.java:101)
at java.lang.ref.Finalizer.access$100(Finalizer.java:32)
at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:178)

Above stack trace was captured from a JVM which was using one of the older versions of JTDS JDBC
Driver. Apparently this version of driver had an issue; you can see finalize() method in the
net.sourceforge.jtds.jdbc.JtdsStatement object calling JtdsConnection#releaseTds() method.
Apparently, this method got blocked and never returned back. Thus Finalizer thread got stuck
indefinitely in the JtdsConnection#releaseTds() method. Due to that Finalizer thread wasn’t able to
work on the other objects that had finalize() method. Due to that application started to su°er from
OutOfMemoryError. In the latest version of JTDS JDBC Driver this issue was fixed. Thus when you are
implementing finalize() method be very careful.

 23
55

PATTERN – LEPRECHAUN TRAP

56

Why named as Leprechaun Trap?
Kids in western countries build Leprechaun Trap as part of St. Patrick’s day celebration. Leprechaun is
a fairy character, basically a very tiny old man, wearing a green coat & hat who is in search for gold
coins. Kids build creative traps for this Laprechaun, luring him with gold coins. Similarly anxious
Finalizer thread is always in search of objects that has finalize() method to execute them. In case if
finalize() method is wrongly implemented, it can trap the Finalizer thread. Because of this similarity we
have named it as Leprechaun Trap.

StackOverFlowError is one of the common confronted JVM error. In this blog post, lets learn inner
mechanics of thread stacks, reasons that can trigger StackOverFlowError and potential solutions to
address this error.

To gain deeper understanding into StackOverFlowError, let’s review this simple program:

public class SimpleExample {
 public static void main(String args[]) {
 a();
 }
 public static void a() {
 int x = 0;
 b();
 }
 public static void b() {
 Car y = new Car();
 c();
 }
 public static void c() {
 float z = 0f;
 System.out.println("Hello");
 }
}

STACKOVERFLOWERROR:
CAUSES & SOLUTIONS

This program is very simple with the following execution code:

• main() method is invoked first
• main() method invokes a() method. Inside a() method integer variable ‘x’ is initialized to value 0.
• a() method in turn invokes b() method. Inside b() method Car object is constructed and assigned to
variable ‘y’.

• b() method in turn invokes c() method. Inside c() method float variable ‘z’ is initialized to value 0.

Now let’s review what happens behind the scenes when above simple program is executed. Each
thread in the application has its own stack. Each stack has multiple stack frames. Thread adds the
methods it’s executing, primitive data types, object pointers, return values to its stack frame in the
sequence order in which they are executed.

57

24

24

public class SOFDemo {
 public static void a() {

// Buggy line. It will cause method a() to be called infinite
number of times.

a();
 }
 public static void main(String args[]) {

a();
 }
}

In step #1: main() method is pushed into the application thread’s stack.

In step #2: a() method is pushed into application thread’s stack. In a() method, primitive data type ‘int’
is defined with value 0 and assigned to variable x. This information is also pushed into the same stack
frame. Note both data i.e. ‘0’ and variable ‘x’ is pushed into thread’s stack frame.

In step #3: b() method is pushed into thread’s stack. In b() method, ‘Car’ object is created and assigned
to variable ‘y’. Crucial point to note here is ‘Car’ object is created in the heap and not in the thread’s
stack. Only Car object’s reference i.e. y is stored in the thread’s stack frame.

In step #4: c() method is pushed into thread’s stack. In c() method, primitive data type ‘float’ is defined
with value 0f and assigned to variable z. This information is also pushed into same stack frame. Note
both data i.e. ‘0f’ and variable ‘z’ is pushed into thread’s stack frame.

Once each method’s execution is completed, then method and the variables/object pointers which are
stored in the stack frame are removed as shown in Fig 2.

What causes StackOverflowError?

58

As you can see thread’s stack is storing methods it’s executing, primitive datatypes, variables, object
pointers, and return values. All of these consume memory. If thread’s stack sizes grow beyond the
allocated memory limit then StackOverflowError is thrown. Let’s look at the below buggy program,
which will result in StackOverflowError:

Exception in thread "main" java.lang.StackOverflowError
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)
 at com.buggyapp.stackoverflow.SOFDemo.a(SOFDemo.java:19)

What are the solutions to StackOverflowError?
There are a couple of strategies to address StackOverflowError.

1. Fix the code
Most of the time because of a non-terminating recursive calls (as shown in the above example),
threads stack size can grow to a large size. In those circumstances, you must fix the source code
which is causing recursive looping. When ‘StackOverflowError’ is thrown, it will print the stack trace of
the code that it was recursively executing. This code is a good pointer to start debugging and fixing
the issue.

59

In this program main() method invokes a() method. a() method recursively calls itself. This
implementation will cause a() method to be invoked infinite number of times. In this circumstance a()
method will be added to thread’s stack frame infinite number of times. Thus, after a few thousand
iterations thread’s stack size limit would be exceeded. Once stack size limit is exceeded it will result in
‘StackOverflowError’:

60

2. Increase Thread Stack Size (-Xss)
There might be legitimate reason where a threads stack size needs to be increased. May be thread
has to execute a large number of methods, lot of local variables/created. In such circumstance, you
can increase the thread’s stack size using the JVM argument: ‘-Xss’. This argument needs to be
passed when you start the application.Example:

-Xss2m

This will set the thread’s stack size to 2 mb.

It might bring a question, what is the default thread’s stack size? Default thread stack size varies based
on your operating system, java version & vendor.

HOW TO TROUBLESHOOT
CPU PROBLEMS?

Diagnosing and troubleshooting CPU problems in production that too in cloud environment can
become tricky and tedious. Your application might have millions of lines of code, trying to identify the

exact line of code that is causing the CPU to spike up, might be equivalent of finding a needle in the
haystack. In this article, let’s learn how to find that needle (i.e. CPU spiking line of code) in a matter of
seconds/minutes.

To help readers better understand this troubleshooting technique, we built a sample application and
deployed it into AWSEC2 instance. Once this application was launched, it caused CPU consumption
to spike up to 199.1%. Now let’s walk you through the steps that we followed while troubleshooting
this problem. Basically, there are 3 simple steps:

1. Identify threads that consume CPU
2. Capture thread dumps
3. Identify lines of code that is causing CPU to spike up

1. Identify threads that are causing CPU to spike

In the EC2 instance, multiple processes could be running. The first step is to identify the process that
is causing the CPU to spike up. Best way to do is to use the ‘TOP’ command that is present in
*nixflavor of operating systems.

Issue command ‘top’ from the console

$ top

This command will display all the processes that are running in the EC2 instance sorted by high CPU
consuming processes displayed at the top. When we issued the command in the EC2 instance we
were seeing the below output:

61

25

Fig:‘top’ command issued from an AWS EC2 instance

2. Capture thread dumps
A thread dump is a snapshot of all threads that are present in the application. Thread state, stack
trace (i.e. code path that thread is executing), thread Id related information of each thread in the
application is reported in the thread dump.

62

From the output, you can notice process# 31294to be consuming 199.1% of CPU. It’s pretty high
consumption. Ok, now we have identified the process in the EC2 instance which is causing the CPU
to spike up. Next step is to identify the threads with in this process that is causing the CPU to spike
up.

Issue command ‘top -H -p {pid}’ from the console. Example

$ top -H -p 31294

From the output you can notice:

This command will display all the threads that are causing the CPU to spike up in this particular 31294
process. When we issued this command in the EC2 instance, we were seeing the below output:

Fig:‘top -H -p {pid}’ command issued from an AWS EC2 instance

From the output you can notice:

 Thread Id 31306 consuming 69.3%of CPU
 Thread Id 31307 consuming 65.6%of CPU
 Thread Id 31308 consuming 64.0%of CPU
 Remaining all other threads consume negligible amount of CPU.

This is a good step forward, as we have identified the threads that are causing CPU to spike. As the
next step, we need to capture thread dumps so that we can identify the lines of code that is causing
the CPU to spike up.

There are 8 different options to capture thread dumps. You can choose the option that is convenient
for you. One of the simplest options to take thread dump is to use tool ‘jstack’ which is packaged in
JDK. This tool can be found in $JAVA_HOME/bin folder. Below is the command to capture thread
dump:

63

jstack -l {pid} > {file-path}

where

pid: is the process Id of the application, whose thread dump should be captured

file-path: is the file path where thread dump will be written in to.

Example:

jstack-l 31294 > /opt/tmp/threadDump.txt

As per the example, thread dump of the process would be generated in /opt/tmp/threadDump.txt file.

3. Identify lines of code that is causing CPU to spike up
Next step is to analyze the thread dump to identify the lines of code that is causing the CPU to spike
up. We would recommend analyzing thread dumps through fastThread, a free online thread dump
analysis tool.

Now we uploaded captured thread dump to fastThread tool. Tool generated this beautiful visual
report. Report has multiple sections. On the right top corner of the report, there is a search box.
There we entered the Ids of the threads which were consuming high CPU. Basically, thread Ids that
we identified in step #1 i.e. ‘31306,31307, 31308’.

fastThread tool displayed all these 3 threads stack trace as shown below.

Fig: fastThread tool displaying CPU consuming thread

You can notice all the 3 threads to be in RUNNABLE state and executing this line of code:

 com.buggyapp.cpuspike.Object1.execute(Object1.java:13)

Apparently following is the application source code

Conclusion
To summarize first we need to use ‘TOP’tool to identify the thread Ids that are causing the CPU spike
up, then we need to capture the thread dumps, next step is to analyze thread dumps to identify exact
lines of code that is causing CPU to spike up. Enjoy troubleshooting, happy hacking!

64

package com.buggyapp.cpuspike;
 public class Object1 {
 public static void execute() {
 while (true) {

doSomething();
}

 }
 public static void doSomething() {
 }
 }

You can see line #13 in object1.java tobe ‘doSomething();’. You can see that ‘doSomething()’ method
to do nothing, but it is invoked an infinite number of times because of non-terminating while loop
inline# 11. If a thread starts to a loopinfinite number of times, then CPU will start to spike up. That is
what exactly happening in this sample program. If non-terminating loop in line #11 is fixed, then this
CPU spike problem will go away.

HEAP DUMP ANALYSIS API

Android, JVM Heap dump analysis doesn’t have to be done manually (painfully) anymore. You can
programmatically analyze Heap dumps through our REST API. Below are the few use cases where
our heap dump analysis REST APIs used by major enterprises.

Use Case 1: CI/CD pipeline
As part of continuous integration pipeline, several mature engineering organizations are executing
performance tests. As part of this stress tests, they capture heap dumps from the application.
Captured heap dumps are analyzed through our heap dump analysis REST API. If API identi�es any
memory vulnerabilities or certain values (like Object count, or wasted memory size) goes beyond a
threshold, then the entire build is failed.

Use Case 2: Production root cause analysis
Whenever application experiences any memory problems or OutOfMemoryError, then heap
dumps are captured from the application to analyze. Captured heap dumps can be programmati-
cally analyzed through heap dump analysis REST API. Root cause analysis can be instantly identi-
�ed.

Use Case 3: Analyzing multiple dumps instantly

How to invoke Heap Dump Analysis API?

Enterprises have multiple applications. It’s hard to analyze each applications heap dump manually
on periodic basis, both in production and test environment. It’s both time consuming and tedious
process. In such circumstances, they con�gure cron job that will capture heap dumps on a periodic
basis and analyze heap dumps through our REST API. They con�gure alerts in case if heap dump
thresholds drop below certain values.

nvoking the Heap Dump API is very simple:

1. You will have to Register with us. We will email you the API key. This is the one-time setup
process. Note: if you have purchased enterprise version with API, you don’t have to worry about
registration. The API Key will be provided to you as part of installation instructions.

2. POST HTTP request to http://api.heaphero.io/analyze-hd-api?apiKey={API_KEY_SENT_IN_EMAIL}
3. The body of the HTTP request should contain the Heap Dump that needs to be analyzed.
4. HTTP response will be sent back in JSON format.

26
65

MEMORY

Curl –X POST --data-binary @./my-heap-dump.hprof
http://api.heaphero.io/analyze-hd-api?apiKey={API_KEY_SENT_IN_EMAIL} --header
“Content-Type:text”

Curl –X POST --data-binary @./my-heap-dump.hprof
http://api.heaphero.io/analyze-hd-api?apiKey={API_KEY_SENT_IN_EMAIL} –-header
"Content-Encoding:zip"

Curl –X POST --data-binary @./my-heap-dump.hprof
http://api.heaphero.io/analyze-hd-api?apiKey={API_KEY_SENT_IN_EMAIL}&Content-Encoding=zip

It cannot get any simpler than that? Isn’t it?

Heap Dump are quite large in size. For fast and e˛cient processing, we recommend you to compress
and send the heap dump files. When you are compressing the heap dump, you need to pass
‘Content-Encoding’ element in the HTTP Header element or in the URL parameter.

Say suppose you are compressing heap dump file in to ‘zip’ format, then you can invoke the API with
HTTP header element

or you can also invoke the API with ‘Content-Encoding’ element in the URL parameter

We support following compression formats. You may use the one of your choice:

zip, gz, xz, z, lzma, deflate, sz, lz4, zstd, bz2, tar

Whatever compression format you used for compressing the heap dump should be passed in
‘Content-Encoding’ element.

Postman
You can also invoke API using the POSTMAN, SOAP UI,… sort of tools. Below are the steps to invoke
HeapHero API through Postman.

a. Select the ‘POST’ option b. Enter the URL to be
‘http://api.heaphero.io/analyze-hd-api?apiKey={API_KEY_SENT_IN_EMAIL}’ c. Select ‘Body’ option. d.
Select ‘binary’ radio button e. Click on ‘Choose Files’ button and select your heap dump file f. Now
click on ‘Send’ button. You will see the JSON API response

66

Sample Response:

{
 "totalSize": "235.94kb",
 "objectCount": "4,324",
 "classCount": "470",
 "threadCount": 3,
 "wastedMemoryPercentage": 0,
 "largeClasses": [
 {
 "name": "String",
 "percentage": "39.35761589403973",
 "size": "92.86kb",
 "count": "1,121"
 },
 {
 "name": "char[]",
 "percentage": "15.794701986754967",
 "size": "37.27kb",
 "count": "1,135"
 },
 {

 "name": "byte[]",
 "percentage": "10.341059602649006",
 "size": "24.4kb",
 "count": "8"
 },
 {
 "name": "Object[]",
 "percentage": "10.188741721854305",
 "size": "24.04kb",
 "count": "511"
 },
 {
 "name": "java.lang.reflect.Field",
 "percentage": "2.3543046357615895",
 "size": "5.55kb",
 "count": "79"
 }
],
 "largeObjects": [
 {
 "percentage": 17.589403,
 "size": "41.5kb"
 },
 {
 "objectName": "java.lang.System",
 "percentage": 10.370861,

67

 27HOW TO CAPTURE HEAP DUMP
FROM ANDROID APP? – 3 OPTIONS

Heap Dumps are vital artifacts to diagnose memory-related problems such as memory leaks, Garbage
Collection problems, and java.lang.OutOfMemoryError. They are also vital artifacts to optimize memory
usage as well.

In this article, we have given few di°erent options to capture Heap Dumps from Android Apps. Once
you have captured heap dumps, you can use great tools like HeapHero and Android studio’s heap
analyzer to analyze heap dumps.

1. Memory Profiler
Below are the steps to capture heap dumps from Memory Profiler in Android studio:

a. Run the app and select the device you want to profile from Android Studio.
b. In your Android studio, click on View >> Tool Windows >> Android Profiler

c. There will be Memory timeline, which would be below the CPU timeline, but above the Network
timeline. In this memory timeline, click on download button (highlighted in the below image) to
generate heap dump from the Android app.

68

d. To store heap dump in your system, click on the highlighted icon in the below image.

e. Choose a location to save the generated heap dump file.

69

70

2. Android Debug Bridge (ADB)
Android Debug Bridge is a command line tool which allows you to interact with a device. ADB
provides a variety of device actions, such as installing and debugging apps. It also gives access to the
Unix shell to run a variety of commands on the device. You can use this tool to generate android heap
dumps. Launch ADB shell and follow the below steps:

a. Identify your Android App’s Process Id

First step is to identify your Android App’s process Id. You can do that by issuing below command:

adb shell ps | grep <APP-NAME>

adb shell am dumpheap <PID> <HEAP-DUMP-FILE-PATH>

PID: Your Android App Process Id
HEAP-DUMP-FILE-PATH: Location where heap dump file should be generated

adb shell am dumpheap 1769 /data/local/tmp/android.hprof

Above command will return details about the process. The second number will be the PID of your app.
Please check the below screenshot.

b. Create a Heap Dump:

c. Pull the file to your machine

Example:

Above step will generate the heap dump file in the device. For analysis, you need to pull the
generated file to your machine. You do that by issuing below command:

adb pull <HEAP-DUMP-FILE-PATH>

HEAP-DUMP-FILE-PATH: Location where heap dump file

db pull /data/local/tmp/android.hprof

Example:

3. Capture Heap Dumps on OutOfMemoryError
If you place the below code in your application, it will capture heap dumps whenever your application
receives an OutOfMemoryError.

public class CaptureHeapDumps extends Application {
 private static final String FILE_NAME = "heap-dump.hprof";
 @Override
 public void onCreate() {
 super.onCreate();

Thread.currentThread().setUncaughtExceptionHandler(OutOfMemoryException());

 }
 @NonNull
 private Thread.UncaughtExceptionHandler OutOfMemoryException() {

return new Thread.UncaughtExceptionHandler() {
@Override
public void uncaughtException(Thread t, Throwable e) {

String directory = getApplicationInfo().dataDir;
String absolutePath = new File(directory, FILE_NAME)

.getAbsolutePath();
try {

Debug.dumpHprofData(absolutePath);
} catch (IOException e) {
 e.printStackTrace();
}

}
 };
 }
}

This would generate the heap dump file in this location: /data/user/0/appname/heap-dump.hprof

71

DISAPPOINTING STORY ON
MEMORY OPTIMIZATION

Not all stories need to be success stories. Reality is also not like that. We would like to share a true,
disappointing story (but a phenomenal learning experience) that may be beneficial to you.

This is a story about optimizing memory utilization of a web application. This application was
configured with a lot of memory (4GB) just to service handful of transactions/sec. Thus, we set out to
study the memory utilization patterns of this application. We captured heap dumps of this application
using ‘jmap’ tool. We uploaded the captured heap dump to HeapHero tool. HeapHero is a heap dump
analysis tool just like Eclipse MAT, JProfiler, Yourkit. HeapHero tool profiled the memory and provided
statistics on total classes, total objects, heap size, histogram view of large objects residing in the
memory. On top of these traditional metrics, HeapHero reported the total amount of memory wasted
due to inefficient programming practices. In modern computing, considerable amount memory is
wasted because of inefficient programming practices such as: Duplicate object creation, suboptimal
data type definitions (declaring ‘double’ and assigning only ‘float’ values), over allocation and
underutilization of data structures and several other practices.

This application was no exception to it. HeapHero reported that application is wasting 56% of memory
due to inefficient programming practices. Yes, it’s eyebrow raising 56%. It reported that 30% of
application’s memory is wasted because of duplicate strings.

Fig: HeapHero tool reporting amount of memory wasted due to inefficient programming

String Deduplication

Since Java 8 update 20 a new JVM argument ‘-XX:+UseStringDeduplication’ was introduced. When an
application is launched with this argument, JVM will eliminate the duplicate strings from the
application’s memory during garbage collection. However please be advised that ‘-XX:
+UseStringDeduplication’ argument will work only with G1 GC algorithm. You can activate G1 GC
algorithm by passing ‘-XX:+UseG1GC’.

28
72

 Fig: GCeasy Heap usage graph with ‘-XX:+UseG1GC’

Fig: GCeasy heap usage graph with ‘-XX:+UseG1GC -XX:+UseStringDeduplication’

In Test run #1 heap usage hovering around 1500mb all through the test, in test run #2 also heap
usage was hovering around 1500mb. Disappointingly we didn’t see the anticipated 30% reduction in
the memory usage, despite introducing ‘-XX:+UseG1GC -XX:+UseStringDeduplication’ JVM
arguments.

73

We got excited. We thought just by introducing ‘-XX:+UseG1GC -XX:+UseStringDeduplication’ JVM
argument, we would be able to save 30% of memory without any code refactoring. Wow, isn’t it
wonderful? To verify this theory, we conducted two different tests in our performance lab:

Test 1: Passing ‘-XX:+UseG1GC’

Test 2: Passing ‘-XX:+UseG1GC -XX:+UseStringDeduplication’

We enabled Garbage collection logs on the application to study the memory usage pattern. Analyzed
Garbage Collection logs using the free online garbage collection log analysis tool – GCeasy. We were
hoping that in the test run #2 we would be able to see 30% reduction in the memory consumption,
because of elimination of duplicate strings. However, the reality was quite different. We didn’t see any
difference in the memory usage. Both test runs were consistently showing the same amount of
memory utilization. See the heap usage graphs generated by the GCeasy tool by analyzing the
garbage collection logs.

74

Why there wasn’t reduction in heap usage?

‘Why there wasn’t reduction in heap usage?’ – this question really puzzled us. Did we configure JVM
arguments rightly? Doesn’t ‘-XX:+UseStringDeduplication’ do its job correctly? fs the analysis report
from the GCeasy tool is correct? All these questions troubled our sleep. After detailed analysis, we
figured out the bitter truth. Apparently ‘-XX:+UseStringDeduplication’ will eliminate duplicate strings
that are present in the old generation of the memory only . ft will not eliminate duplicate strings in
the young generation. Java memory has P primary regions: young generation, old generation,
Metaspace. kewly created objects go into the young generation. lbjects that survived for longer
period are promoted into the old generation. JVM related objects and metadata information are
stored in Metaspace. qhus stating in other words ‘-XX:+UseStringDeduplication’ will only remove
duplicate strings that are living for a longer period. Since this is a web application, most of the string
objects were created and destroyed immediately. ft was very clear from the following statistics
reported in the GCeasy log analysis report:

Fig: Object creation/promotion stats reported by GCeasy

Average object creation rate of this application is: 44.93 mb/sec, whereas average promotion rate (i.e.
from young generation to old generation) is only 918 kb/sec. It’s indicative that very small of the
percentage of objects are long living. Even in these 918 kb/sec promoted objects, string objects are
going to be a smaller portion. Thus the amount of duplicate strings removed by ‘-XX:
+UseStringDeduplication’ was very negligible. Thus, sadly we didn’t see the expected reduction in
memory.

Conclusion

(a). ‘-XX:+UseStringDeduplication’ will be useful only if application has a lot of long-lived duplicate
strings. It wouldn’t yield fruitful results for applications when majority of the objects are short-lived.
Unfortunately, most modern web applications, micro-service applications objects are short-lived.

(b). Another famous option recommended in the industry to eliminate duplicate strings is to use
String#intern() function. However, String#intern() isn’t going to be useful for this application. Because
in String#intern() you end up creating the string objects and then eliminating it right after. If a string is
short-lived by nature, you don’t need to do this step, as regular garbage collection process will
eliminate the strings. Also, String#intern() has a possibility to add (very little) latency overhead to the
transaction and CPU overhead.

(c). Given the current situation best way to eliminate duplicate strings from the application is to
refactor the code to make sure duplicate strings are not even created. HeapHero points out the code
paths where a lot of duplicate of strings are created. Using those pointers, we are going to continue
our journey to refactor the code to reduce memory consumption.

Few seconds after you click on “Add Objects” button, application will crash with OutOfMemoryError, as
shown below:

HOW TO DIAGNOSE
OUTOFMEMORYERROR
IN ANDROID?

Diagnosing OutOfMemoryError in Android apps can become a tricky, tedious job. Here, we would like
to show you an easy technique to troubleshoot OutOfMemoryError in Android apps.

BuggyApp
To facilitate this exercise, we built a simple android
application which would trigger OutOfMemoryError. We
named this app ‘BuggyApp’. Do you like the name?
This app has just one page, which contains only one
button: “Add Objects”. When you click on this button,
the app would start to add very large string objects to
an array list in an infinite while loop. When large string
objects are infinitely added to an array list, it will result
in OutOfMemoryError.

75

29

How to diagnose OutOfMemoryError?
Now let’s get to the interesting part – How to diagnose OutOfMemoryError? It’s just two easy simple
steps, my friend:

Capture Android Heap Dumps
Analyze Android Heap Dumps

1. Capture Android Heap Dumps

2. Analyze Android Heap Dumps

First step is to capture heap dumps from the android app. Heap Dump is a snapshot of memory, which
contains information about the objects in the memory, their references, their size… Here is an article
which summarizes 3 di°erent options to capture heap dumps from the android app . You can use any
one of the options that is convenient for you to capture heap dumps. We used option #2 mentioned in
the article to capture the heap dump from this ‘BuggyApp’.

Second step is to analyze the captured heap dump. To analyze android heap dumps, we used the free
online tool: HeapHero. This tool analyzes android heap dumps and points out potential memory leak
suspects. Besides identifying memory leaks, HeapHero also identifies the amount of memory wasted
due to poor programming practices and recommends solutions to fix the same. Since it’s an online
tool, you don’t have to do any downloading, installation, setup…. All you need to do is to upload the
heap dump file that was captured in step #1 to HeapHero.
Now we uploaded the heap dump file captured in step #1 to HeapHero. HeapHero generated this
beautiful report. In the report, there is a section: ‘Large Objects’. This section reports all the large
objects that are residing in the memory.

From the report, you could see the ‘android.view.inputmethod.InputMethodManager.sInstance’ object
to occupy 96.7% of overall memory. This is a significant size for any object. In fact, HeapHero has
in-built intelligence to identify potential memory leaking objects. Based on this intelligence, HeapHero
also marked ‘android.view.inputmethod.InputMethodManager.sInstance’ object as potential memory
leak suspect.

When we clicked on the ‘android.view.inputmethod.InputMethodManager.sInstance’ hyperlink in the
report, it started to show stack trace/code path of the leaking objects.

76

You could see the ‘buggycompany.com.buggyapp.MainActivity’ object holding ‘java.util.ArrayList’
object, which in turn is holding on to large amount of string objects (96.6%). Ahaha, exact lines of code
that we wrote in ‘BuggyApp’ to trigger OutOfMemoryError.

That’s it my friend �. With these two simple steps, you might be able to solve complex
OutOfMemoryError and memory leak problems. We hope this article will help you to isolate the exact
lines of code that are triggering memory problems in your app.

77

HOW TO DIAGNOSE
MEMORY LEAKS?

Memory leaks don’t have to be hard/scary/tedious problem to solve if we can follow below mentioned
3 simple steps:

Step 1: Capture baseline heap dump

Step 2: Capture troubled heap dump

You need to capture heap dump when it’s in the healthy state. Start your application. Let it take real
tra˛c for 10 minutes. A t this point, capture heap dump. Heap Dump is basically the snapshot of your
memory. It contains all objects that are residing in the memory, values stored in those objects, inbound
& outbound references of those object. You can capture Heap dump using the following command:

jmap-dump:format=b,file=<file-path><pid>
where
pid: is the Java Process Id, whose heap dump should be captured
file-path: is the file path where heap dump will be written in to.

-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=<file-path>
file-path: is the file path where heap dump will be written in to.

If you don’t want to use jmap for capturing heap dumps, here are several other options to capture
heap dumps.

It’s always better to capture heap dump in the production environment (unless in the test environment,
you can mirror the exact production tra˛c pattern). T ra˛c type and its volume play a primary role in
the type and number of objects created in the memory.

After doing step #1, let the application run. Before application crashes, take another heap dump once
again. Often times, it might be challenging to capture heap dumps before it crashes because we don’t
know when the application will crash. Is it after 30 minutes, 3 hours, 3 days? Thus, it’s ideal to start
your application with following JVM property:

This property will trigger heap dump right when the application experiences OutOfMemoryError.

78

30

Step 3: Compare heap dumps
Objects which are causing memory leaks grow over the period. If you can the identify objects whose
size has grown between the heap dumps captured in step #1 and step #2, then those are the objects
which are causing memory leak.

You can consider using heap dump analyzer tool such as HeapHero.io for this purpose. When you
load the heap dumps into HeapHero.io, it provides rich information about your application’s memory.
There is a “Large Objects” section (shown in Fig 1), which reports largest objects that are sitting in the
memory. Compare this section between heap dumps captured in step #1 and step #2. If you notice
any abnormal growth of objects, then they are the ones which are causing memory leak in your
application. You can also click on any of the largest objects to see the children, grandchildren,
great-grandchildren objects present in it.Screen shot of this section is shown in Fig #2.

79

31WHAT HAPPENS
BEHIND THE SCENE
– FINALIZE() METHOD
“What is the purpose of finalize() method?” is one of the often asked Java interview questions. The
typical answer to it is: “Usual purpose of finalize() method is to perform cleanup actions before the
object is discarded”. However, behind the scene, finalize() method are handled in a special way. A
small mistake in finalize() method has the potential to jeopardize entire application’s availability. Let’s
study it in detail.

Behind the Scene
Objects that have “finalize()” method are treated di°erently during garbage collection process than the
ones which don’t have. During garbage collection phase, objects with “finalize()” method aren’t
immediately evicted from the memory. Instead, as the first step, those objects are added to an internal
queue of ‘java.lang.ref.Finalizer’. For entire JVM, there is only one low priority JVM thread, by name,
‘Finalizer’ that executes “finalize()” method of each object in the queue. Only after the execution of
“finalize()” method, the object becomes eligible for Garbage Collection. Assume if the application is
producing a lot of objects which has “finalize()” method and the low priority “Finalizer” thread isn’t able
to keep up with executing finalize() method, then significant amount of unfinalized objects will start to
build up in the internal queue of ‘java.lang.ref.Finalizer’, which would result in significant amount of
memory wastage.

Sometimes because of poor programming practice, “Finalizer” thread may start to WAIT or BLOCK
while executing the “finalize()” method. If “Finalizer” thread starts to wait or block, then the number of
unfinalized objects in the internal queue of ‘java.lang.ref.Finalizer’ will start to grow significantly, which
would result in OutOfMemoryError, jeopardizing entire JVM’s availability.

80

Example

To illustrate this theory, we wrote a simple sample program.

public class SampleObject {

 public String data;

 public SampleObject(String data) {

this.data = data;

 }

 @Override

 public void finalize() {

try {

// Sleep for 1 minute.

Thread.currentThread().sleep(1 * 60 * 1000);

} catch (Exception e) {}

 }

Basically, ‘main()’ method of this class creates ‘SampleObject’ continuously. Interesting part of this
program is “finalize()” method. This method puts the current executing thread (i.e. ‘Finalizer’ thread) to
sleep for 1 minute. This example illustrates the poor implementation of “finalize()” method.

When we ran the above program with max heap size of 10 mb (i.e. -Xmx10M), it crashed with
‘java.lang.OutOfMemoryError’ after few seconds of launch.

This program crashed with ‘java.lang.OutOfMemoryError’ because: Only after the execution of
‘finalize()’ method, SampleObject can be evicted from the memory. Since ‘Finalizer’ thread is put to
sleep, it couldn’t execute the “finalize()” method at the rate in which ‘main()’ method was creating new
‘SampleObject’. Thus memory got filled up and program resulted in ‘java.lang.OutOfMemoryError’.

On the other hand, when we commented out “finalize()” method, program ran continuously without
experiencing any ‘java.lang.OutOfMemoryError’.

81

How to diagnose this problem?

Your application might contain hundreds, thousands, millions of classes. It includes classes from 3rd
party libraries and frameworks. Now the question become, how will you identify “finalize()” methods
that are poorly implemented? This is a tough question to answer. This is where heap dump analysis
tools like HeapHero.io might come handy.

When heap dump was captured from the above program and uploaded to HeapHero.io, it generated
this beautiful report with several sections. Section that is of interest to us is: ‘Objects waiting for
finalization’.

This section of the report shows the amount of memory wasted due to objects waiting for finalization
of your application. In this hypothetical example 7.66 MB i.e. 97.2% is the amount of memory that is
wasted.

82

When you click on the hyperlink given under ‘What are the objects waiting for finalization?’, you will be
able to see the objects waiting to be finalized. Basically, you will be able to see the object tree of
“j.l.r.ReferenceQueue” (note this is queue of ‘java.lang.ref.Finalizer’ object that holds the reference of
all objects, whose finalize() method needs to be executed). If you drill down the tree it will show the
objects that are sitting in the queue waiting to be finalized. Here you can see 2 types of objects that
are sitting in the queue:

com.petals.finalize.SampleObject.data occupying 56.8% of memory
com.petals.finalize.SampleObject occupying 11.5% of memory
BINGO!! These are the objects that are created in our sample program �

83

32

1. Fix Thread Creation Rate
When you see

java.lang.OutOfMemoryError: unable to create new native thread,

java.lang.OutOfMemoryError: unable to create new native thread’

you should diagnose whether the application has started to create more threads. You can use online
thread dump analyzer tool such as http://fastthread.io/ (which I would highly recommend), to see how
many threads are created? What is the stack trace of those excessively created threads? Who is
creating them? Once you know to these questions, it’s easy to solution them. Check out the ‘real world
example’ section of this article, which walks through a ‘

problem experienced a major B2B travel application and how http://fastthread.io/ tool was used to
diagnose the problem.

84

TROUBLESHOOT OUTOFMEMORY
ERROR : UNABLE TO CREATE
NEW NATIVE THREAD

There are 8 flavors of java.lang.OutOfMemoryError. In these 8 flavors

java.lang.OutOfMemoryError: unable to create new native thread

OutOfMemoryError

java.lang.OutOfMemoryError: unable to create new native thread

is one of the commonly occurring flavor. This type of

is generated when an application isn’t able to create new threads. This error can surface because of
following two reasons:

There is no room in the memory to accommodate new threads.
The number of threads exceeds the Operating System limit.

Solutions
There are 6 potential solutions to address this

error. Depending on what event is triggering this error, either one or a combination of the below
mentioned solutions can be applied to resolve the problem.

2. Increase the Thread Limits Set at Operating System

3. Allocate More Memory to the Machine

4. Reduce Heap Space

ulimit –u

ulimit –u

java.lang.OutOfMemoryError: unable to create new native thread.

The Operating System has limits for the number of threads that can be created. The limit can be found
by issuing “

” command. In certain servers, I have seen this value set to a low value such as 1024. It means totally
only 1024 threads can be created in this machine. So if your application is creating more than 1024
threads, it’s going to run into

In such circumstances increase this limit.

If you don’t see a high number of threads created and

value is well ahead then it’s indicative that your application has grown organically and needed more
memory to create threads. In such circumstance, allocate more memory to the machine. It should
solve the problem.

One very important point that even seasoned engineers forget is: threads are not created within the
JVM heap. They are created outside the JVM heap. So if there is less room left in the RAM, after the
JVM heap allocation, application will run into

So let’s consider this example:

As per this configuration 5.5 GB (i.e. 5 GB heap + 512 MB Perm Gen) is used by the JVM Heap and it
leave only 0.5GB (i.e. 6 GB – 5.5GB) space. Note in this 0.5 GB space – kernel processes, other user
processes and threads has to run. It may not be su˛cient, and most lik ely the application will start to
experience

java.lang.OutOfMemoryError: unable to create new native thread

To mitigate this problem, you can consider reducing the Heap Size from 5GB to 4GB (if your
application can accommodate it without running into other memory bottlenecks).

85

java.lang.OutOfMemoryError: unable to create new native thread

5. Reduce Number of Processes
This solution is quite similar to ‘Reduce Heap Space’. Let’s looks into this scenario, where you are
running multiple processes on a server which is constrained by memory. Say:

It means in total all of the java processes heap is occupying 30 GB (i.e. 5 processes X 6 GB) of
memory. It leaves only 2 GB for kernel processes, other user processes and threads to run. It may not
be su˛cient, and most lik ely the application will start to experience

In this circumstance, it’s better to run only 4 java processes on one server. So that only 24 GB is
occupied (4 processes X 6GB), and it leaves 8 GB (i.e. 32 GB – 24 GB) of memory. It might leave
enough room for threads and run other processes to run.

6. Reduce Thread Stack Size (-Xss)
A thread occupies memory in RAM. So if each thread has high memory allocation, then overall
memory consumption will also go higher. The default value of a thread’s memory size depends on the
JVM provider. In some cases it’s 1mb. So if your application has 500 threads, then threads alone is
going to occupy 500mb of space.

86

However, you can use the java system property –Xss to set the thread’s memory size. Using this
property, you can throttle down the memory size. Example if you configure -Xss256k, your threads will
only consume 125mb of space (i.e. 500 threads X 256k). So by lowering –Xss size also, you might be
able to eliminate

java.lang.OutOfMemoryError: unable to create new native thread

CAUTION: However if you configure –Xss to a very low value, you will start to experience
java.lang.StackOverflowError. If you configure to even lower value, JVM will not even start.

java.lang.OutOfMemoryError: unable to create new native thread

Real World Example
Now let me walk through a real world example of

which I diagnosed recently. This error was experienced by a major B2B travel application in North
America. No recent production deployments were made to this application, but all of a sudden it
started to throw

87

java.lang.OutOfMemoryError: unable to create new native thread

java.lang.OutOfMemoryError: unable to create new native thread

java.lang.OutOfMemoryError: unable to create new native thread

Step 1: As an initial step, we captured the thread dump from the application when it was
experiencing this

Step 2: http://fastthread.io/ tool reported that application had 3216 threads alive and rightly pointed
that it can result in

3000+ threads was a very high thread count for this application, which is at least 6 times more than
the regular period.

Then we uploaded the thread dump into online thread dump analyzer http://fastthread.io/.

Step 3: Since now it’s confirmed that excessive threads are causing

java.lang.OutOfMemoryError: unable to create new native thread

the next step is to identify what those excessively created threads are? And who is creating them?
http://fastthread.io/ tool has a section “Repeating Stack traces”, in which threads with same stack
traces are grouped together. In that section, we noticed that 2319 threads (i.e. 72%) are exhibiting
same stack trace as shown in Fig 2.

88

Fig 3: Individual Thread’s stack trace as reported by the http://fastthread.io/ tool

Fig 2: http://fastthread.io/ tool showing group of threads which has same stack trace

From the stack trace, we inferred that these threads created are by the Datastax driver. This
application uses DataStax driver for connecting with Apache Cassandra NoSQL Database. So now the
question becomes all of sudden why Datastax driver started to create so many threads? No upgrades
were made to this driver. No recent deployments were made to the application. Why all of a sudden
this problem started?

Root cause: Apparently the problem turned out that Apache Cassandra NoSQL DB was running
into disk space issue on one of its nodes. This issue caused the Datastax driver to spawn thousands of
threads. Thus it cascaded as ‘java.lang.OutOfMemoryError: unable to create new native thread’ error
on the JVM side. When more space was allocated to Apache Cassandra NoSQL DB nodes, the
problem got resolved.

ECLIPSE MAT – TIDBITS

89

33
Eclipse MAT is a great JVM Memory Analysis tool. Here are few tidbits to use it e°ectively .

1. Use stand-alone version

2. Eclipse MAT – heap size

Two versions of Eclipse MAT is available:

1. Stand-alone
2. Eclipse Plugin

Based on my personal experience, stand-alone version seems to works better and faster then plugin
version. So I would highly recommend installing Stand-alone version.

If you are analyzing a heap dump of size, say 2 GB, allocate at least 1 GB additional space for Eclipse
MAT. If you can allocate more heap space, then it’s more the merrier. You can allocate additional heap
space for Eclipse MAT tool, by editing MemoryAnalyzer.ini file. This file is located in the same folder
where MemoryAnalyzer.exe is present. To the MemoryAnalyzer.ini you will add -Xmx3g at the bottom.

90

Examples

-startup
plugins/org.eclipse.equinox.launcher_1.3.0.v20140415-2008.jar
--launcher.library
plugins/org.eclipse.equinox.launcher.win32.win32.x86_64_1.1.200.v20140603-13
26
-vmargs
-Xmx3g

3. Enable ‘keep unreachable objects’

From it’s reporting Eclipse MAT removes the object which it thinks as ‘unreachable.’ As ‘unreachable’
objects are eligible for garbage collection, MAT doesn’t display them in the report. Eclipse MAT
classifies Local variables in a method as ‘unreachable objects’. Once thread exits the method, objects
in local variables will be eligible for garbage collection.

However, there are several cases where a thread will go into a ‘BLOCKED’ or prolonged ‘WAITING’,
‘TIMED_WAITING’ state. In such circumstances local variables will be still alive in memory, occupying
space. Since Eclipse MAT default settings don’t show the unreachable objects, you will not get
visibility into these objects. You can change the default settings in Eclipse MAT 1.4.0 version by:

1. Go to Window > Preferences …
2. Click on ‘Memory Analyzer’
3. Select ‘Keep unreachable objects’
4. Click on ‘OK’ button

91

4. Smart Data Settings
Eclipse MAT by default displays data in bytes. It’s di˛cult to read large object sizes in bytes and digest
it. Example Eclipse MAT prints object size like this: “193,006,368”. It’s much easier if this data can be
displayed in KB, MB, GB i.e. “184.07 MB”.

Eclipse MAT provides an option to display object size in KB, MB, GB based on their appropriate size.
It can be enabled by following below steps:
1. Go to Window > Preferences …
2. Click on ‘Memory Analyzer’
3. In the ‘Bytes Display’ section select ‘Smart: If the value is a gigabyte or …’
4. Click on ‘OK’ button

92

Once this setting change is made, all data will appear in much more readable KB, MB, GB format, as
shown in below figure.

SHALLOW HEAP, RETAINED
HEAP

Eclipse MAT (Memory Analyzer Tool) is a powerful tool to analyze heap dumps. It comes quite handy
when you are trying to debug memory related problems. In Eclipse MAT two types of object sizes are
reported:

1. Shallow Heap

2. Retained Heap

In this article lets study the difference between them. Let’s study how are they calculated?

93

 34

Fig 1: Objects in memory

It’s easier to learn new concepts through example. Let’s say your application’s has object model as
shown in Fig #1:

 Object A is holding reference to objects B and C.

 Object B is holding reference to objects D and E.

 Object C is holding reference to objects F and G.

Let’s say each object occupies 10 bytes of memory. Now with this context let’s begin our study.?

Shallow Heap size
Shallow heap of an object is its size in the memory. Since in our example each object occupies 10
bytes, shallow heap size of each object is 10 bytes. Very simple.

94

Retained Heap size of B
From the Fig #1 you can notice that object B is holding reference to objects D and E. So, if object B
is garbage collected from memory, there will be no more active references to object D and E. It
means D & E can also be garbage collected. Retained heap is the amount of memory that will be
freed when the particular object is garbage collected. Thus, retained heap size of B is:

= B’s shallow heap size + D’s shallow heap size + E’s shallow heap size

= 10 bytes + 10 bytes + 10 bytes

= 30 bytes

Thus, retained heap size of B is 30 bytes.

Retained Heap size of C
Object C is holding reference to objects F and G. So, if object C is garbage collected from memory,
there will be no more references to object F & G. It means F & G can also be garbage collected.
Thus, retained heap size of C is:

= C’s shallow heap size + F’s shallow heap size + G’s shallow heap size

= 10 bytes + 10 bytes + 10 bytes

= 30 bytes

Thus, retained heap size of C is 30 bytes as well

Fig 2: Objects Shallow and Retained Heap size

Retained Heap size of A
Object A is holding reference to objects B and C, which in turn are holding references to objects D,
E, F, G. Thus, if object A is garbage collected from memory, there will be no more reference to
object B, C, D, E, F and G. With this understanding let’s do retained heap size calculation of A.

Thus, retained heap size of A is:

= A’s shallow heap size + B’s shallow heap size + C’s shallow heap size + D’s shallow heap size + E’s
shallow heap size + F’s shallow heap size + G’s shallow heap size

= 10 bytes + 10 bytes + 10 bytes + 10 bytes + 10 bytes + 10 bytes + 10 bytes

= 70 bytes

Thus, retained heap size of A is 70 bytes.

95

Retained heap size of D, E, F and G
Retained heap size of D is 10 bytes only i.e. their shallow size only. Because D don’t hold any active
reference to any other objects. Thus, if D gets garbage collected no other objects will be removed
from memory. As per the same explanation objects E, F and G’s retained heap size are also 10 bytes
only.

Let’s make our study more interesting
Now let’s make our study little bit more interesting, so that you will gain thorough understanding of
shallow heap and retained heap size. Let’s have object H starts to hold reference to B in the
example. Note object B is already referenced by object A. Now two guys A and H are holding
references to object B. In this circumstance lets study what will happen to our retained heap
calculation.

Fig 3: New reference to Object B

In this circumstance retained heap size of object A will go down to 40 bytes. Surprising? Puzzling?
continue reading on. If object A gets garbage collected, then there will be no more reference to
objects C, F and G only. Thus, only objects C, F and G will be garbage collected. On the other hand,
objects B, D and E will continue to live in memory, because H is holding active reference to B. Thus
B, D and E will not be removed from memory even when A gets garbage collected.

Thus, retained heap size of A is:

= A’s shallow heap size + C’s shallow heap size + F’s shallow heap size + G’s shallow heap size

= 10 bytes + 10 bytes + 10 bytes + 10 bytes

= 40 bytes.

Thus, retained heap size of A will become 40 bytes. All other objects retained heap size will remain
undisturbed, because there is no change in their references.

Hope this article helped to clarify Shallow heap size and Retained heap size calculation in Eclipse
MAT. You might also consider exploring HeapHero – another powerful heap dump analysis tool,
which shows the amount of memory wasted due to inefficient programming practices such as
duplication of objects, overallocation and underutilization of data structures, suboptimal data type
definitions,….

96

NO. OutOfMemoryError Cause Solution

OUTOFMEMORYERROR

97

35
1 Java heap space

2

3

GC overhead limit
exceeded

Requested array
size exceeds VM
limit

4 Permgen Space

1. Java process is spending more than
98% of its time doing
garbage collection and recovering less
than 2% of the heap and
has been doing so far the last 5
(compile time constant) consecutive
garbage collection

1. Object could not be allocated in the
Java heap
2. Increase in Tra˛c volume
3. Application is unintentionally holding
references to objects which prevents
the objects from being garbage
collected
4. Application makes excessive use of
finalizers. Finalizer objects aren't GCed
immediately. Finalizers are executed
by a daemon thread that services the
finalization queue. Sometimes finalizer
thread cannot keep up, with the
finalization queue.

1. Increase Heap size '-Xmx'.
2. Fix memory leak in the
application

1. Increase heap size '-Xmx'
2. GC Overhead limit exceeded
can be turned o° with '- XX:-
UseGCOverheadLimit'
3. Fix the memory leak in the
application

1. Application attempted to allocate an
array that is larger than the heap size

1. Permgen space contains:
a. Names,Fields, methods of the classes
b. Object arrays and type arrays
associated with a class
c. Just In Time compiler optimizations
When this space runs out of space this
error is thrown

1. Increase heap size '-Xmx'
2. Fix bug in application. code
attempting to create a huge
array

1. Increase Permgen size
'-XX:MaxPermSize'
2. Application redeployment
without restarting can cause this
issues. So restart JVM.

5 Metaspace

6 Unable to create
new native thread

7 Kill process or
sacrifice child

8 Reason
stack_trace_with_
native_method

1. From Java 8 Permgen replaced by
Metaspace. Class metadata is
allocated in native memory (referred
as metaspace). If metaspace is
exhausted then this error is thrown

1. There isn't su˛cient memory to
create new threads. Threads are
created in native memory. It indicates
there isn't su˛cient native memory
space

1. Kernel Job – Out of Memory Killer.
Will kill processes under extremely
low memory conditions

1. Native method encountered
allocation failure
2. a stack trace is printed in which
the top frame is a native method

1. If '-XX:MaxMetaSpaceSize',
has been set on the
command-line, increase its
value.
2. Remove
'-XX:MaxMetsSpaceSize'
3. Reducing the size of the Java
heap will make more space
available for MetaSpace.
4. Allocate more memory to the
server
5. Could be bug in application.
Fix it.

1. Allocate more memory to the
machine 2. Reduce Java Heap
Space
3. Fix thread leak in the
application.
4. Increase the limits at the OS
level. ulimit -a
max user processes (-u) 1800
5. Reduce thread stack size with
-Xss parameter

1. Migrate process to di°erent
machine.
2. Add more memory to
machine

1. Use OS native utilities to
diagnose

98

VIRTUAL MACHINE ERROR

Java.lang.VirtualMachineError is thrown when Java virtual machine encounters any internal error or
resource limitation which prevents it from functioning. It’s a self-defensive mechanism employed by
JVM to prevent entire application from crashing. In this article lets discuss different types of
VirtualMachineError, their characteristics, reasons why they get triggered and potentials solutions to
fix them.

99

 36

Types of VirtualMachineError
There are four different types of VirtualMachineError:

a. OutOfMemoryError

b. StackOverflowError

c. InternalError

d. UnknownError

Let’s review these types in detail in this section

Fig: Java Throwable class hierarchy

a. OutOfMemoryError
Just like OMG (Oh My God) acronym, OOM (OutOfMemoryError) is quite popular among DevOps
community :-). Most DevOps engineers think that there is one OutOfMemoryError. But there are 8
different flavors of OutOfMemoryError:

1. java.lang.OutOfMemoryError: Java heap space

2. java.lang.OutOfMemoryError: GC Overhead limit exceeded

3. java.lang.OutOfMemoryError: Requested array size exceeds VM limit

4. java.lang.OutOfMemoryError: Permgen space

5. java.lang.OutOfMemoryError: Metaspace

6. java.lang.OutOfMemoryError: Unable to create new native thread

7. java.lang.OutOfMemoryError: Kill process or sacrifice child

8. java.lang.OutOfMemoryError: reason stack_trace_with_native_method

Each flavor is triggered for different reasons. Similarly, solutions are also different for each flavor of
OutOfMemoryError. Here is a beautiful one-page document that summarizes all different flavors of
OutOfMemoryError, their causes and solutions.

In general, OutOfMemoryError can be diagnosed and fixed by analyzing Garbage Collection logs
and Heap Dumps. Since analyzing Garbage Collection logs manually can be tedious, you may
consider using free tools like: GCeasy, HP Jmeter, IBM GC analyzer. Similarly to analyze heap
dumps, you may consider using free tools like: HeapHero, Eclipse MAT.

b. StackOverflowError
Thread’s stack is storing information about the methods it’s executing, primitive datatype values,
local variables, object pointers, and return values. All of them consume memory. If thread’s stack
sizes grow beyond the allocated memory limit, then java.lang.StackOverflowError is thrown. This
problem typically happens when a thread recursively invokes same function again and again as a
result of a bug in the executing program. More details on how to debug StackOverflowError and all
possible solutions to fix it can be found in this article.

c. InternalError
java.lang.InternalError is thrown by JVM when there is a:

a. Fault in the software implementing the virtual machine,

b. Fault in the underlying host system software

c. Fault in the hardware.

But rarely you will encounter InternalError. To understand what specific scenarios may cause
InternalError, you may search for ‘InternalError’ string in Oracle’s Java Bug database. At the time of
writing this article (Dec’ 20, 2018), there are only 200 defects reported for this error in Oracle java
bug database. Most of them are fixed.

100

d. UnknownError
java.lang.UnknownError is thrown when an exception or error has occurred, but the Java virtual
machine is unable to report the actual exception or error. Seldom you will see UnknownError. In
fact, when searching for ‘UnknownError’ in Oracle Java Bug database at the time of writing this
article (Dec’ 20, 2018), there are only 2 defects found reported.

Characteristics
VirtualMachineError has couple of primary characteristics:

1. Unchecked Exception

2. Synchronous & asynchronous delivery

Let’s discuss these two characteristics in this section.

(1). Unchecked Exception
There are two types of Exceptions:

1. Checked exceptions

2. Unchecked exceptions

Exceptions which are checked at compile time called Checked Exception. If some methods in your
code throws a checked exception, then the method must either handle the exception or it must
specify the exception using throws keyword. Examples of the checked exceptions are: IOException,
SQLException, DataAccessException, ClassNotFoundException…

Unchecked exceptions do not have this requirement. They don’t have to be caught or declared
thrown. All types of VirtualMachineError are unchecked exceptions.

(2). Synchronous & asynchronous Delivery
Exceptions can be thrown in two modes:

1. Synchronous

2. Asynchronous

Synchronous exceptions happen at a specific program statement, no matter, how many number of
times program is executed in similar environment. Example of synchronous exceptions are
NullPointerException, ArrayIndexOutOfBoundException, etc.…

Asynchronous exceptions can happen at any point in time and it can happen in any part of program
statement. There will be no consistency where it can be thrown. All the VirtualMachineError are
thrown asynchronously, but sometimes they can also be thrown synchronously. StackOverflowError
may be thrown synchronously by method invocation as well as asynchronously due to native
method execution or Java Virtual Machine resource limitations. Similarly, OutOfMemoryError may be
thrown synchronously during object creation, array creation, class initialization, and boxing
conversion, as well as asynchronously.

101

REMOTE DEBUGGING
JAVA APPLICATIONS

Few problems might happen only on test or production servers. It may not be reproducible in your
local machine. In those circumstances you want to connect your IDE to the remote test (or
production) servers and do remote debugging.

Java applications can be remotely debugged by following these two simple steps:

Pass remote debugging arguments to JVM
Configure IDE
Let’s review these two steps in this article.

Step 1: Pass remote debugging arguments to JVM

Typically, you would launch your java application like this:

To enable remote debugging you need to pass these additional arguments:

java -jar app.jar

java -Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=8000,suspend=n -jar app.jar

-Xdebug: Enables JVM to do remote debugging.

-Xrunjdwp: Specifies the connectivity details:

Transport: Configures transport between application and debugger. It can have 2 values: ‘dt_socket’
or ‘shmem’. ‘dt_socket’ instructs to socket interface. ‘shmem’ will instruct application and debugger
interace through shared memory region, which is useful only when both application and debugger are
running on same machine.

Address: Port which will be opened by the application for remote debugging.

Suspend: It can have two values. ‘y’ means application will be suspended until any remote debugger
is connected to the application. ‘n’ means application will not be suspened even if no remote
debugger is connected to the application.

102

37
GENERAL

Step 2: Configure IDE
Below are the steps to configure Eclipse IDE to connect to your remote application:

(1). Click on the Debug menu icon

(2). Click on ‘Debug Configurations…’ menu item

(3). In the left panel select ‘Remote Java Application’

(4). Press the ‘New’ button

103

(5). Now you need enter project and connectivity details:

a. In the ‘Name’ field you can enter any name. Example: myapp-remotedebugging

b. In the ‘Project’ field select your applications source code that you want to debug.

c. In the ‘Host’ field enter the hostname in which your application is running.

(6). After entering all these details click on the ‘Debug’ button.

That’s it. Now you are all set for doing remote debugging. Wish you ‘Happy Debugging’. Hopefully it’s
not that painful.

Warning:

Don’t keep remote debugging JVM arguments ON always, as it has following downsides:

a. Remote debugging mode disables several optimizations that JVM does to application to optimize
the performance. All those optimizations will be lost.

b. Remote debugging opens up a port. It’s a security risk, as anyone who can hit the server can initiate
remote debugging.

104

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

