
JVM Performance
Engineering and
Troubleshooting

Compilation of Ram Lakshmanan’s Blog and Articles

Author

Ram Lakshmanan

(yCrash)

crash

Index

Garbage Collection

1. “I don’t have to worry about Garbage collection” – Is it true? 1

2. How to do GC Log analysis? 4

3. Garbage collection patterns to predict outages 7

4. Memory tuning: Key Performance Indicators 14

5. Tips to reduce Long GC Pauses 17

6. How many millions of dollars enterprises waste due to 23
Garbage collection?

1. “I don’t have to worry about
Garbage collection” – Is it true?

I have heard a few of my developer friends say: “Garbage Collection is automatic. So, I
do not have to worry about it.“ The first part is true, i.e., “Garbage Collection is
automatic” on all modern platforms – Java, .NET, Golang, Python… But the second part i.e.,
“I don’t have to worry about it.” – may not be true. It is arguable, questionable. Here is my
case to showcase the importance of Garbage Collection:

1. Unpleasant customer experience

When a garbage collector runs, it pauses the entire application to mark the objects that
are in use and sweep away the objects that don’t have active references. During this
pause period, all customer transactions which are in motion will be stalled (i.e., frozen).
Depending on the type of GC algorithm and memory settings that you configure, pause
times can run anywhere from a few milliseconds to a few minutes. Frequent pauses in the
application can cause stuttering, juddering, or halting effects to your customers. It will
leave an unpleasant experience for your customers.

2. Millions of dollars wasted

 we published, explaining factually how enterprises are wasting

millions of dollars due to garbage collection. Basically, in a nutshell, modern applications
are creating . These objects must be continuously
investigated to determine whether they have active references or are they ready for
garbage collection. Once objects are garbage collected, the memory becomes
fragmented. Fragmented memory must be compacted. All these activities consume
enormous compute cycles. These compute cycles translate to millions of dollars in
spending. If Garbage collection performance can be optimized, it can result in several
millions of dollars in cost savings.

Here is a white paper

 thousands/millions of objects

1

Garbage Collection

https://blog.gceasy.io/2021/07/08/how-many-millions-of-dollars-enterprises-waste-due-to-garbage-collection/
https://blog.gceasy.io/2019/11/06/memory-wasted-by-spring-boot-application/

2

3. Low risk, high impact performance improvements

By virtue of optimizing Garbage collection performance, you are not only improving the
Garbage collection pause time, but you are improving the overall application’s response
time. We recently helped to tune the garbage collection performance of one of the
world’s largest automobile companies. Just by modifying the garbage collection settings
without refactoring a single line of code, we improved their overall application’s
response time significantly. The below table summarizes the overall response time
improvement we achieved with each Garbage Collection setting change we made:

When we started the GC tuning exercise, this automobile application’s overall response
time was 1.88 seconds. As we optimized Garbage Collection performance with different
settings, on iteration #8, we were able to improve the overall response time to 0.95
seconds. i.e., 49.46% improvement in the response time. Similarly, percentages of
transactions taking more than 25 seconds dropped from 0.7% to 0.31%, i.e., 55%
improvement. This is a significant improvement to achieve without modifying a single line
of code.

All other forms of response time improvement will require infrastructure change or
architectural change, or code-level changes. All of them are expensive changes. Even if
you embark on making those costly changes, there is no guarantee of the application’s

Avg Response Time (secs) Transactions > 25 sec (%)

Baseline 1.88 16

GC settings iteration #2

GC settings iteration #3

GC settings iteration #4

GC settings iteration #5

GC settings iteration #6

GC settings iteration #7

GC settings iteration #8

4GB

4GB

4GB

4GB

4GB

4GB

4GB

8

8

8

8

8

8

8

3

response time improvement.

4. Predictive Monitoring

Garbage Collection logs expose vital predictive micrometrics. These metrics can be used
for forecasting application’s availability and performance characteristics. One of the
micrometrics exposed in Garbage Collection is ‘GC Throughput‘ (to read more about
other micrometrics, refer to this). What is GC Throughput? If your application’s GC
throughput is 98%, it means your application is spending 98% of its time processing
customer activity and the remaining 2% of the time in GC activity. When the application
suffers from a memory problem, several minutes before GC throughput will start to
degrade. Troubleshooting tools like monitors ‘GC throughput’ to predict and
forecast the memory problems before they surface in the production environment.

article

 yCrash

5. Capacity Planning

When you are doing capacity planning for your application, you need to understand your
application’s demand for memory, CPU, Network and storage. One of the best ways to
study the demand for memory is by analyzing garbage collection behaviour. When you
analyze garbage collection behaviour, you would be able to determine average object
creation rate (example: 150 MB/sec), average object reclamation rate. Using these sort of
micrometrics you can do effective capacity planning for your application.

Conclusion

Friends, in this post, I have made my best efforts to justify the importance of garbage
collection analysis. I wish you and your team the best to benefit from the highly insightful
garbage collection metrics.

https://blog.gceasy.io/2019/03/13/micrometrics-to-forecast-application-performance/
https://ycrash.io/

4

2. How to do GC Log analysis?

Analyzing garbage collection log provides several advantages like: Reduces GC pause

time, reduces cloud computing cost, predicts outages, provides effective metrics for

capacity planning. To learn about the profound advantages of GC log analysis,

. In this post let’s learn how to analyze GC logs?

please

refer to this post

Here is an interesting video clip which walks through the best practices, KPIs, tips &

tricks to effectively optimize Garbage collection performance.

Basically, there are 3 essential steps when it comes to GC log analysis:

Garbage Collection

Watch video

https://www.youtube.com/watch?v=dZbmIMLCfZY

Enable GC logs

Step 1 Step 2 Step 3

Measurement Duration

 & Environment

Tools to analyze

https://blog.gceasy.io/2021/07/08/i-dont-have-to-worry-about-garbage-collection-is-it-true/
https://blog.gceasy.io/2021/07/08/i-dont-have-to-worry-about-garbage-collection-is-it-true/
https://www.youtube.com/watch?v=6G0E4O5yxks
https://www.youtube.com/watch?v=dZbmIMLCfZY

5

1. Enable GC Logs

Even though certain monitoring tools provide Garbage Collection graphs/metrics at real

time , they don’t provide a complete set of details to study the GC behavior. GC logs are

the best source of information, to study the Garbage Collection behavior. You can enable

GC logs, by specifying below JVM arguments in your application:

Java 8 & below versions:

If your application is running on Java 8 & below versions, then pass below arguments:

2. Measurement Duration & environment

It’s always best practice to study the GC log for a 24-hour period during a weekday, so

that application would have seen both high volume and low volume traffic tide.

It’s best practice to collect the GC logs from the production environment, because

garbage collection behavior is heavily influenced by the traffic patterns. It’s hard to

simulate production traffic in a test environment. Also overhead added by GC log in

production servers is negligible, in fact it’s not even measurable. To learn about overhead

added by enabling GC logs, you can . refer here

Java 8 & below versions:

If your application is running on Java 8 & below versions, then pass below arguments:

-XX:+PrintGCDetails -Xloggc:<gc-log-file-path> 

Example: 

-XX:+PrintGCDetails -Xloggc:/opt/tmp/myapp-gc.log

-XX:+PrintGCDetails -Xloggc:<gc-log-file-path> 

Example: 

-XX:+PrintGCDetails -Xloggc:/opt/tmp/myapp-gc.log

Let’s discuss these 3 steps now.

https://blog.gceasy.io/2021/08/17/overhead-added-by-garbage-collection-logging/

6

3. Tools to analyze

Once you have captured GC logs, you can use one of the following free tools to analyze

the GC logs

 GCeas

 IBM GC & Memory visualize

 HP Jmete

 Garbage Cat

https://gceasy.io/
https://developer.ibm.com/javasdk/tools/
https://h20392.www2.hpe.com/portal/swdepot/displayProductInfo.do?productNumber=HPJMETER
https://code.google.com/archive/a/eclipselabs.org/p/garbagecat

7

3. Garbage collection patterns
to predict outages

As the author of – Garbage collection log analysis tool, I get to see few
interesting Garbage Collection Patterns again & again. Based on the Garbage collection
pattern, you can detect the health and performance characteristics of the application
instantly. In this video and the post, let me share few interesting Garbage collection
patterns that have intrigued me.

GCeasy

Garbage Collection

Watch video

1. Healthy saw-tooth pattern

You will see a beautiful saw-tooth GC pattern when an application is healthy, as shown in
the above graph. Heap usage will keep rising; once a ‘Full GC’ event is triggered, heap
usage will drop all the way to the bottom.

In Fig 1, You can notice that when the heap usage reaches ~5.8GB, ‘Full GC’ event (red

https://www.youtube.com/watch?v=4jlfd3XCeTM

https://gceasy.io/
https://www.youtube.com/watch?v=4jlfd3XCeTM

8

triangle) gets triggered. When the ‘Full GC’ event runs, memory utilization drops all the
way to the bottom i.e., ~200MB. Please see the dotted black arrow line in the graph. It
indicates that the application is in a healthy state & not suffering from any sort of memory
problems.

2. Heavy caching pattern

When an application is caching many objects in memory, ‘GC’ events wouldn’t be able to
drop the heap usage all the way to the bottom of the graph (like you saw in the earlier
‘Healthy saw-tooth’ pattern).

In Fig 2, you can notice that heap usage keeps growing. When it reaches around ~60GB,
GC event (depicted as a small green square in the graph) gets triggered. However, these
GC events aren’t able to drop the heap usage below ~38GB. Please refer to the dotted
black arrow line in the graph. In contrast, in the earlier ‘Healthy saw-tooth pattern’, you
can see that heap usage dropping all the way to the bottom ~200MB. When you see this
sort of pattern (i.e., heap usage not dropping till all the way to the bottom), it indicates
that the application is caching a lot of objects in memory.

When you see this sort of pattern, you may want to investigate your application’s heap
using heap dump analysis tools like and figure out
whether you need to cache these many objects in memory. Several times, you might
uncover unnecessary objects to be cached in the memory.

 yCrash, HeapHero, Eclipse MAT

Fig 1: Healthy saw-tooth GC pattern

https://ycrash.io/
https://heaphero.io/
https://www.youtube.com/watch?v=SuguH8YBl5g

9

3. Acute memory leak pattern

Several applications suffer from this ‘Acute memory leak pattern’. When an application
suffers from this pattern, heap usage will climb up slowly, eventually resulting in
OutOfMemoryError.

In Fig 3, you can notice that ‘Full GC’ (red triangle) event gets triggered when heap usage
reaches around ~43GB. In the graph, you can also observe that amount of heap that full
GC events could recover starts to decline over a period of time, i.e., you can notice that

a. When the first Full GC event ran, heap usage dropped to 22GB

b. When the second Full GC event ran, heap usage dropped only to 25GB

c. When the third Full GC event ran, heap usage dropped only to 26GB

d. When the final full GC event ran heap usage dropped only to 31GB

Please see the dotted black arrow line in the graph. You can notice the heap usage
gradually climbing up. If this application runs for a prolonged period (days/weeks), it will
experience OutOfMemoryError (please refer to Section #5 – ‘Memory Leak Pattern’).

Here is the real-world which depicts this ‘Acute memory leak’ GC log analysis report,

Here is the real-world which depicts this ‘Heavy caching’ pattern. GC log analysis report,

Fig 2: Healthy caching GC pattern

https://gceasy.io/my-gc-report.jsp?p=c2hhcmVkLzIwMjEvMTAvOS8tLWFjdXRlLW1lbW9yeS1sZWFrLS0zLTUzLTU5&channel=WEB&s=t
https://gceasy.io/my-gc-report.jsp?p=c2hhcmVkLzIwMjEvMTAvOS8tLWNhY2hlX2djLmxvZy0tMy00OS0zMg==&channel=WEB&s=t

10

4. Consecutive Full GC pattern

When the application’s traffic volume increases more than JVM can handle, this
Consecutive full GC pattern will become pervasive.

In Fig 4, please refer to the black arrow mark in the graph. From 12:02pm to 12:30 pm on
Oct’ 06, Full GCs (i.e., ‘red triangle’) are consecutively running; however, heap usage isn’t
dropping during that time frame. It indicates that traffic volume spiked up in the
application during that time frame, thus the application started to generate more
objects, and Garbage Collection couldn’t keep up with the object creation rate. Thus, GC
events started to run consecutively. Please note that when a GC event runs, it has two
side effects:

a. CPU consumption will go high (as GC does an enormous amount of computation).

b. Entire application will be paused; no customers will get response.

Thus, during this time frame, 12:02pm to 12:30pm on Oct’ 06, since GC events are
consecutively running, application’s CPU consumption would have been skyrocketing
and customers wouldn’t be getting back any response. When this kind of pattern
surfaces, you can resolve it using one of the solutions outlined .in this post

pattern.

Fig 3: Acute memory leak pattern

https://blog.gceasy.io/2016/11/22/eliminate-consecutive-full-gcs/

11

5. Memory Leak Pattern

This is a ‘classic pattern’ that you will see whenever the application suffers from memory
problems. In Fig 5, please observe the black arrow mark in the graph. You can notice that
Full GC (i.e., ‘red triangle’) events are continuously running. This pattern is similar to the
previous ‘Consecutive Full GC’ pattern, with one sharp difference. In the ‘Consecutive Full
GC’ pattern, application would recover from repeated Full GC runs and return back to
normal functioning state, once traffic volume dies down. However, if the application runs
into a memory leak, it wouldn’t recover, even if traffic dies. The only way to recover the
application is to restart the application. If the application is in this state, you can use
tools like to diagnose memory leak. Here is a more
detailed post on .

Here is the real-world , which depicts this ‘Memory Leak’ pattern.

 yCrash, HeapHero, Eclipse MAT
how to diagnose Memory leak

GC log analysis report

Here is the real-world , which depicts this ‘Consecutive Full GC’
pattern.

GC log analysis report

Fig 4: Consecutive full GC pattern

https://ycrash.io/
https://heaphero.io/
https://www.youtube.com/watch?v=SuguH8YBl5g
https://blog.ycrash.io/2021/02/22/chaos-engineering-simulating-outofmemoryerror/
https://gceasy.io/my-gc-report.jsp?p=c2hhcmVkLzIwMjIvMDcvMTgvbW9uZGVlLWdjLW1lbW9yeS1sZWFrLW5vdC1kZXRlY3RlZC0tMTktMzktMTc=&channel=WEB&s=t
https://gceasy.io/my-gc-report.jsp?p=c2hhcmVkLzIwMjEvMTAvOS8tLWNvbnNlY3V0aXZlLWZ1bGwtZ2MubG9nLS0zLTYtNDI=&channel=WEB&s=t

12

6. Metaspace Memory problem Pattern

If you notice in this graph pattern, Full Garbage Collection events are consecutively
triggered after 12:30am even though only 10% of maximum heap size is reached.
Maximum available heap size for this application is 2.5GB, whereas Full GC events are
triggered even memory is reaching 250MB (i.e., 10% of the maximum size). Typically,
consecutive full GCs are triggered only when maximum heap size is reached. When you
see this sort of pattern it’s indicative that Metaspace region is reaching its maximum size.
This can happen when

a. Metaspace region size is under allocated

b. Memory leak in the Metaspace region.

You can increase Metaspace region size by passing this JVM argument (-
XX:MaxMetaspaceSize). You can refer to to see how to troubleshoot
Metaspace memory problem.

Here is the which depicts this ‘Metaspace Memory
problem’ Pattern.

this post

real-world GC log analysis report,

Fig 5: Memory leak GC pattern

https://blog.ycrash.io/2022/07/26/troubleshooting-microservices-outofmemoryerror-metaspace/
https://gceasy.io/my-gc-report.jsp?p=c2hhcmVkLzIwMjIvMDcvMTYvbWV0YXNwYWNlLW9vbWVycm9yLmdjLS0xOC0xNy0zMg==&s=t&channel=WEB

13

Conclusion

You can also consider (as it doesn’t
add any measurable) and study the garbage collection
behavior. It may reveal insightful views/perspectives about your application that you
weren’t aware of before.

 enabling your application’s Garbage collection log
overhead to your application

Fig 6: Metaspace memory problem pattern

https://blog.gceasy.io/2017/10/17/what-is-garbage-collection-log-how-to-enable-analyze/
https://blog.ycrash.io/2021/08/17/overhead-added-by-garbage-collection-logging/

14

4. Memory tuning: Key
Performance Indicators

When you are tuning the application’s memory & Garbage Collection settings, you should
take well-informed decisions based on the key performance indicators. But there are
overwhelming amount of metrics reported; which one to choose and which one to leave?
This article intends to explain the right KPIs and right tools to source them.

Garbage Collection

What are the right KPIs?

Throughput

Throughput is the amount of productive work done by your application in a given time
period. This brings the question what is productive work? what is non-productive work?

Productive Work: This is basically the amount of time your application spends in
processing your customer’s transactions.

Non-Productive Work: This is basically the amount of time your application spend in
house-keeping work, primarily Garbage collection.

Let’s say your application runs for 60 minutes. In this 60 minutes let’s say 2 minutes is
spent on GC activities.

It means application has spent 3.33% on GC activities (i.e. 2 / 60 * 100)

KPI

Throughput Latency Footprint

15

Latency

This is the amount of time taken by one single Garbage collection event to run. This
indicator should be studied from 3 fronts.

Footprint

Footprint is basically the amount CPU consumed. Based on your GC algorithm, based on
your memory settings, CPU consumption will vary. Some GC algorithms will consume
more CPU (like Parallel, CMS), whereas other algorithms such as Serial will consume less
CPU.

According to memory tuning Gurus, you can pick only 2 of them at a time

 If you want good throughput and latency, then footprint will degrade
 If you want good throughput and footprint, then latency will degrade
 If you want good latency and footprint, then throughput will degrade.

Right Tools

Throughput and Latency can be obtained from analyzing Garbage collection Logs.

a. Average GC Time: What is the average amount of time spent on GC?

b. Maximum GC time: What is the maximum amount of time spent on a single
GC event? Your application may have service level agreements such as “no
transaction can run beyond 10 seconds”. In such cases, your maximum GC
pause time can’t be running for 10 seconds. Because during GC pauses, entire
JVM freezes – no customer transactions will be processed. So it’s important to
understand the maximum GC pause time.

c. GC Time Distribution:You should also understand how many GC events are
completing with in what time range (i.e. within 0 – 1 second, 200 GC events
are completed, between 1 – 2 second 10 GC events are completed …)

It means application throughput is 96.67% (i.e. 100 – 3.33).

Now the question is: What is the acceptable throughput %? It depends on the
applicationand business demands. Typically one should target for more than 95%
throughput.

16

Footprint (i.e. CPU consumption) can be obtained from the monitoring tools – Nagios,
NewRelic, AppDynamics,…

Upload your application’s Garbage Collection log file in tool. This tool
can parse Garbage Collection logs and generates Throughput and Latency indicators for
you. Below is the screen shot from the tool showing the throughput
and latency:

http://gceasy.io/

 http://gceasy.io/

Fig 1: KPI section from GCeasy.io report

http://gceasy.io/
http://gceasy.io/

17

5. Tips to reduce Long

GC Pauses

Long GC Pauses are undesirable for applications. It affects your SLAs; it results in poor

customer experiences, and it causes severe damages to mission critical applications.

Thus in this article, I have laid out key reasons that can cause long GC pauses and

potential solutions to solve them.

What are the objects that created?

What is the rate at which these objects are created?

What is the amount of space they are occupying in memory?

Who is creating them?

Always try to optimize the objects which occupy the most amount of memory. Go after

big fish in the pond.

Garbage Collection

1. High Object Creation Rate

If your application’s object creation rate is very high, then to keep with it, garbage

collection rate will also be very high. High garbage collection rate will increase the GC

pause time as well. Thus, optimizing the application to create less number of objects is

THE EFFECTIVE strategy to reduce long GC pauses. This might be a time-consuming

exercise, but it is 100% worth doing. In order to optimize object creation rate in the

application, you can consider using java profilers like JVisualVM….).

These profilers will report

 JProfiler, YourKit,

Tit-bit: How to figure out object creation rate?

Upload your GC log to the Universal Garbage Collection log analyzer tool This
tool will report the object creation rate. There will be field by name ‘Avg creation rate’ in
the section ‘Object Stats.’ This field will report the object creation rate. Strive to keep

 GCeasy.

https://www.ej-technologies.com/products/jprofiler/overview.html
https://yourkit.com/
http://gceasy.io/

18

this value lower always. See the image (which is an excerpt from the generated
report), showing the ‘Avg creation rate’ to be 8.83 mb.sec.

GCeasy

2. Undersized Young Generation

When young Generation is undersized, objects will be prematurely promoted to Old
Generation. Collecting garbage from old generation takes more time than collecting it
from young Generation. Thus increasing young generation size has a potential to reduce
the long GC pauses. Young Generation can be increased setting either one of the two
JVM arguments

-Xmn: specifies the size of the young generation

-XX:NewRatio: Specifies ratio between the old and young generation. For example,
setting -XX:NewRatio=3 means that the ratio between the old and young generation is
3:1. i.e. young generation will be fourth of the overall heap. i.e. if heap size is 2 GB, then
young generation size would be 0.5 GB.

3. Choice of GC Algorithm

Choice of GC algorithm has a major influence on the GC pause time. Unless you are a GC
expert or intend to become one or someone in your team is a GC expert – you can tune
GC settings to obtain optimal GC pause time. Assume if you don’t have GC expertise,
then I would recommend using G1 GC algorithm, because of it’s auto-tuning capability. In
G1 GC, you can set the GC pause time goal using the system property ‘-
XX:MaxGCPauseMillis.’ Example:

 -XX:MaxGCPauseMillis=20

As per the above example, Maximum GC Pause time is set to 200 milliseconds. This is a
soft goal, which JVM will try it’s best to meet it. If you are already using G1 GC algorithm

Object Stats
These are good metrics to compare with previous baseline

3.82 tb

16.48 tb

8.83 mb/sec

38 kb/sec

Total created bytes

Total promoted bytes

Avg creation rate

Avg promotion rate

http://gceasy.io/

19

and still continuing to experience high pause time, then refer to this article.

4. Process Swapping

Sometimes due to lack of memory (RAM), Operating system could be swapping your
application from memory. Swapping is very expensive as it requires disk accesses which
is much slower as compared to the physical memory access. In my humble opinion – no
serious application in a production environment should be swapping. When process
swaps, GC will take a long time to complete.

Below is the script obtained from (thanks to the author) – which when
executed will show all the process that are being swapped. Please make sure your
process is not getting swapped.

StackOverflow

#!/bin/bash  
Get current swap usage for all running processes 
Erik Ljungstrom 27/05/2011 
Modified by Mikko Rantalainen 2012-08-09 
Pipe the output to "sort -nk3" to get sorted output 
Modified by Marc Methot 2014-09-18 
removed the need for sudo  

SUM=0 
OVERALL=0 
for DIR in `find /proc/ -maxdepth 1 -type d -regex "^/proc/[0-9]+"` 
do 
 PID=`echo $DIR | cut -d / -f 3` 
 PROGNAME=`ps -p $PID -o comm --no-headers` 
 for SWAP in `grep VmSwap $DIR/status 2>/dev/null | awk '{ print $2 }'` 
 do 
 let SUM=$SUM+$SWAP 
 done 
 if (($SUM > 0)); then 
 echo "PID=$PID swapped $SUM KB ($PROGNAME)" 
 fi 
 let OVERALL=$OVERALL+$SUM 
 SUM=0 
done 
echo "Overall swap used: $OVERALL KB"

If you find your process to be swapping then do one of the following:

a. Allocate more RAM to the server

b. Reduce the number of processes that running on the server, so that it can free up the
memory (RAM).

http://stackoverflow.com/questions/479953/how-to-find-out-which-processes-are-swapping-in-linux

20

c. Reduce the heap size of your application (which I wouldn’t recommend, as it can cause
other side effects).

5. Less GC Threads

For every GC event reported in the GC log, user, sys and real time are printed. Example:

6. Background IO Traffic

If there is a heavy file system I/O activity (i.e. lot of reads and writes are happening) it can
also cause long GC pauses. This heavy file system I/O activity may not be caused by your
application. Maybe it is caused by another process that is running on the same server,
still, can cause your application to suffer from long GC pauses. Here is a brilliant

 which walks through this problem in detail.

When there is a heavy I/O activity, you will notice the ‘real’ time to be significantly more
than ‘user’ time. Example:

article
from LinkedIn Engineers,

[Times: user=25.56 sys=0.35, real=20.48 secs]

[Times: user=0.20 sys=0.01, real=18.45 secs]

WARNING: Adding too many GC threads will consume a lot of CPU and takes away a resource from
your application. Thus you need to conduct thorough testing before increasing the GC thread
count.

To know the difference between each of these times, please read the article. (I highly
encourage you to read the article, before continuing this section). If in the GC events you
consistently notice that ‘real’ time isn’t significantly lesser than the ‘user’ time – then it
might be indicating that there aren’t enough GC threads. Consider increasing the GC
thread count. Say suppose ‘user’ time 25 seconds, and you have configured GC thread
count to be 5, then real time should be close to 5 seconds (because 25 seconds / 5
threads = 5 seconds).

When this pattern happens, here are the potential solutions to solve it:

a. If high I/O activity is caused by your application, then optimize it.

b. Eliminate the processes which are causing high I/O activity on the server

c. Move your application to a different server where I/O activity is less

https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic
https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic
https://blog.gceasy.io/2016/04/06/gc-logging-user-sys-real-which-time-to-use/

21

Tit-bit: How to monitor I/O activity?

You can monitor I/O activity, using the sar (System Activity Report), in Unix. Example:

7. System.gc() calls

When or method calls are invoked it will cause
stop-the-world Full GCs. During stop-the-world full GCs, entire JVM is freezed (i.e. No
user activities will be performed during period). System.gc() calls are made from one of
the following sources:

System.gc() Runtime.getRuntime().gc()

sar -d -p 1

Above commands reports the reads/sec and writes/sec made to the device every 1
second. For more details on ‘sar’ command refer to this tutorial.

 Your own application developers might be explicitly calling System.gc() method
 It could be 3rd party libraries, frameworks, sometimes even application servers that

you use could be invoking System.gc() method
 It could be triggered from external tools (like VisualVM) through use of JM
 If your application is using RMI, then RMI invokes System.gc() on a periodic interval.

This interval can be configured using the following system properties:

– Dsun.rmi.dgc.server.gcInterval=n

– Dsun.rmi.dgc.client.gcInterval=n

Evaluate whether it’s absolutely necessary to explicitly invoke System.gc(). If there is no
need to then, please remove it. On the other hand, you can forcefully disable the
System.gc() calls by passing the JVM argument: ‘-XX:+DisableExplicitGC‘. For complete
details on System.gc() problems & solution refer to this article.

Tit-bit: How to know whether System.gc() calls are explicitly called?

Upload your GC log to the Universal Garbage Collection log analyzer tool This
tool has a section called ‘GC Causes.’ If GC activity is triggered because of ‘System.gc()’
calls then it will be reported in this section. See the image (which is an excerpt from the

 generated report), showing that System.gc() was made 4 times during the
lifetime of this application.

GCeasy.

GCeasy

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#gc()
http://docs.oracle.com/javase/6/docs/api/java/lang/Runtime.html#gc()
http://www.linuxtechi.com/generate-cpu-memory-io-report-sar-command/
https://blog.gceasy.io/2016/11/22/system-gc/
http://gceasy.io/
http://gceasy.io/

22

Object Stats
These are good metrics to compare with previous baseline

242

4

Count

1

2

Allocation Failure

System.gc() calls

Cause

Promotion Failure

GCLocker Initiated GC

8. Large Heap size

Large heap size (-Xmx) can also cause long GC pauses. If heap size is quite high, then
more garbage will be get accumulated in the heap. When Full GC is triggered to evict the
all the accumulated garbage in the heap, it will take long time to complete. Logic is
simple: If you have small can full of trash, it’s going to be quick and easy to dispose them.
On the other hand if you have truck load of trash, it’s going to take more time to dispose
them.

Suppose your JVMs heap size is 18GB, then consider having three 6 GB JVM instances,
instead of one 18GB JVM. Small heap size has great potential to bring down the long GC
pauses.

9. Workload distribution

Eventhough there are multiple GC threads, sometimes work load is evenly distributed
between GC worker Threads. There are multiple reasons why GC workloads may not be
evenly broken up amoing GC threads. For example:

a. Scanning of large linear data structures currently can not be parallelized.b. Some times
of events only triggers single thread collector (example when there is ‘concurrent mode
failure’ in CMS collection)

If you happen to use CMS (Concurrent Mark & Sweep algorithm), you can consider
passing -XX:+CMSScavengeBeforeRemark argument. This can create more balanced
workloads among GC worker threads.

CAUTION: All of the above mentioned strategies should be rolled to production only after thorough
testing & analysis. All strategies may not apply to your application. Improper usage of these strategies
can result in negative results.

23

6. How many millions of dollars
enterprises waste due to
Garbage collection?

We truly believe enterprises are wasting millions of dollars in garbage collection. We

equally believe enterprises are wasting these many millions of dollars even without

knowing they are wasting. Intent of this post is to bring visibility on how several millions of

dollars are wasted due to garbage collection.

Garbage Collection

crash

Garbage Collection
and the price we are paying for it

Watch video

https://www.youtube.com/watch?v=N1_ScYISIGs&t=7s

What is Garbage?

All applications have a finite amount of memory. When a new request comes, the

application creates objects to service the request. Once a request is processed, all the

objects created to service that request are no longer needed. In other terms those

https://www.youtube.com/watch?v=N1_ScYISIGs&t=7s

24

objects become garbage. They have to be evicted/removed from the memory so that
room is created to service new incoming requests.

Garbage collection evolution: Manual
Automatic

3 – 4 decades back, C, C++ programming languages were popularly used by the
development community. In those-programming languages garbage collection needs to
be done by the developers. i.e., application developers need to write code to dispose of
unreferenced objects from the memory. If developers forget (or miss) to write that logic in
their program, then the application will suffer from memory leak. Memory leaks will cause
applications to crash. Thus, memory leaks were claimed to be quite pervasive back in
those days.

In the mid-1990s when the Java programming language was introduced, it provided
automatic garbage collection i.e., developers no longer have to write logic to dispose of
unreferenced objects. Java Virtual machine will itself automatically remove unreferenced
objects from memory. Definitely it was a great productivity improvement, developers
enjoyed this feature. On top of it, a number of memory leak related crashes also came
down. Sounds great so far, right? But there was one catch to this automatic garbage
collection.

To do this automatic garbage collection, JVM has to pause the application to identify
unreferenced objects and dispose them. This pausing can take anywhere from a few
milliseconds to few minutes, depending on the application, workload & JVM settings.
When an application is paused to do garbage collection, no customer transactions will be
processed. Any customer transactions that are in the middle of processing will be halted.
It will result in poor response time to the customers. So, this was the trade-off, i.e., for
developer productivity and minimizing memory leak related crashes, application pause
times got introduced in automatic garbage collection. By doing effective tuning we can
bring down the pause time, but it cannot be eliminated.

This might sound like a minor performance hit to the customer’s response time. But it
does not stop there, today enterprises are losing millions of dollars because of this
automatic garbage collection. Below are the interesting facts/details.

25

Garbage collection Throughput

‘GC Throughput’ is one of the key metrics that is studied when it comes to Garbage
collection tuning. This metric is cleverly reported in percentage. What is ‘GC Throughput
%?’. It is basically the amount of time application spends in processing the customer
transactions vs amount of time application spends in processing Garbage collection
activities. Say suppose application has 98% as it’s GC Throughput, it means application is
spending 98% of its time in processing customer transactions and remaining 2% of time
in processing Garbage collection activities.

Does 98% GC throughput sound good to you? Since human minds are trained to read
98% as A grade score, definitely 98% GC throughput should sound good. But in reality, it
is not the case. Let us look at the below calculations.

In 1 day, there are 1440 minutes (i.e. 24 hours x 60 minutes).

98% GC throughput means application is spending 28.8 minutes/day in garbage
collection. (i.e., the application is spending 2% of time in processing GC activities. 2% of
1440 minutes is 28.8 minutes).

What is this telling us? Even if your GC throughput is 98%, your application is spending
28.8 minutes/day (i.e., almost 30 minutes) in Garbage collection. For that 28.8 minutes
period your application is pausing. It’s not doing anything for your customer.

One way to visualize this problem is: Say you have bought a brand-new expensive car and you want to
drive this car for a couple of hours. How will you feel if the car runs only for 1 hour and 50 minutes, but
stops intermittently in the middle of the road for 10 minutes, and still ends up consuming gasoline?
This is what is happening exactly in automatic garbage collection. JVM keeps pausing intermittently,
while application is still processing customer transactions.

26

99% 98% 97% 96% 95%

Minutes wasted by 1
instance per day

Hours wasted by 1
instance per year

Dollars wasted by large
size company (10K

Instances per year)

Dollars wasted by X-
Large size company

(100K Instances

per year)

Dollars wasted by mid-
size company (1K

Instances per year)

GC Throughput %

14.4 min 28.8 min 43.2 min 57.6 min 72 min

87.6 hrs 175.2 hrs 262.8 hrs 350.4 hrs 438 hrs

$50.07K $100.14K $150.21K $200.28K $250.36K

$500.77K $1.00M $1.50M $2.00M $2.50M

$5.00M $10.01M $15.02M $20.02M $25.03M

WasteD

99% - 95%

100K instances/year

Dollars wasted

Even healthy application’s GC throughput ranges from 99% to 95%. Sometimes it could
go even below than that. In the below table I have summarized how many dollars mid-
size(1K instances/year), large-size(10K instances/year) and very large(100K instances/
year) enterprises would be wasting based on their application’s GC throughput
percentage.

Here are the assumptions I have used for our calculation:

27

 Midsize enterprise would have their application running on 1000 EC2 instances. Large
size enterprises would have their application running on 10,000 EC2 instances. Very
large enterprises would have their application running on 100,000 EC2 instances

 For our calculation, I assume these enterprises are running on t2.2x.large 32G RHEL
on-demand instances in US West (North California) EC2 instances. Cost of this type
of EC2 instance is $ 0.5716/hour.

From all the below graphs you can notice the amount of money midsize, large size and
very large size enterprise would be wasting due to garbage collection:

$250k/year

$200k/year

$150k/year

$100k/year

$50k/year

$0k/year

99% 98% 97% 96% 95%

GC Throughput%

Do
lla

rs
 W

as
te

d
($

)

$25M/year

$20M/year

$15M/year

$10M/year

$5M/year

$0M/year

99% 98% 97% 96% 95%

GC Throughput%

Do
lla

rs
 W

as
te

d
($

)

$2.5M/year

$2M/year

$1.5M/year

$1M/year

$0.5M/year

$0M/year

99% 98% 97% 96% 95%

GC Throughput%

He
ap

 S
iz

e
(g

b)

Fig 1: Money wasted by midsize
enterprise due to Garbage Collection

Fig 1.2: Money wasted by very large size enterprise due to Garbage Collection

Fig 1.1: Money wasted by large size
enterprise due to Garbage Collection

28

Note 1: Here I have made calculations with assumptions GC throughput ranges only from 99% to 95%,

several applications tend to have much poorer throughput. In such circumstances the amount of

dollars wasted will be a lot more.  

Note 2: I have used t2.2x.large 32G RHEL instance for calculation. Several enterprises tend to use

machines with much larger capacity. In such circumstances, the amount of dollars wasted will be a lot

more.

Counter arguments

Following are the counter arguments that can be placed against this study

 For my study I have used AWS EC2 on-demand instances, rather I could have taken

dedicated instances for my calculations. Difference between on-demand and

dedicated instances is only approximately 30%. So, the price point can fluctuate only

by 30%. Still 70% of the above cost is outrageous

 Another argument can be AWS cloud is costly, I could have used some other cloud

provider or bare metal machines or serverless architecture. Yes, these all are valid

counter arguments, but they will shift the calculation only by a few percentages. But

the case that garbage collection is wasting resources cannot be disputed.

You are open to articulate any other counter arguments in the comments section. I will try

to respond to it.

29

Conclusion

In this post I have presented the case on how an exorbitant amount of money is wasted

due to garbage collection. Unfortunate thing is: money is wasted even without our

awareness. As applications developers/managers/executives we can do the following

 We should try to tune garbage collection performance , so that our applications starts

to spend very less time on Garbage collection

 Modern applications tend to create tons of objects even to service simple requests.

Here is our case study which shows the by the well

celebrated spring boot framework. We can try to write efficient code, so that our

applications tend to create very less number of objects to service the incoming

requests. If our applications create a smaller number of objects, then very less

garbage needs to be evicted from memory. If garbage is less, the pause time will also

come down.

amount of memory wasted

https://blog.heaphero.io/2019/11/18/memory-wasted-by-spring-boot-application/

30

To get the complete ebook and
many other goodies. Buy JVM
training course and become JVM
expert today!

Get a certificate on

completing the course

Checkout Course

How To Get The
Complete Ebook

https://ycrash.io/java-performance-training

